Skip to main content

An Overview of Techno-economic Analysis and Life-Cycle Assessment of Thermochemical Conversion of Lignocellulosic Biomass

  • Chapter
  • First Online:
Recent Advancements in Biofuels and Bioenergy Utilization

Abstract

Energy derived from biomass provides a promising alternative source that reduces dependence on fossil fuels along with the emission of greenhouse gases (GHG). The production of heat, electricity, power, fuels, and various chemicals from the biomass can be achieved via thermochemical conversion technologies. This chapter summarizes the techno-economic analysis and life-cycle assessment of lignocellulosic biomass via thermochemical conversion routes such as combustion, pyrolysis, gasification, liquefaction, (hydrothermal). and co-firing. Specific indicators such as production costs, techno-economic analysis, functional units, and environmental impacts in a life-cycle analysis for different techniques were compared. Finally, the research lacunae and possible future trends in biomass conversion via thermochemical conversion techniques have been discussed, which may positively impact the future of research related to techno-economic and environmental benefits of bioenergy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAS:

Acid-acid synthesis

BCB:

Bubbling circulating bed

CHP:

Catalytic fast pyrolysis and hydroprocessing

COE:

Cost of electricity

COS:

Carbonyl sulfide

DME:

Dimethyl ether

FTS:

Fischer-Tropsch synthesis

GHG:

Greenhouse gas emissions

HCN:

Hydrogen cyanide

HPH:

Hydropyrolysis and hydroprocessing

IGCC:

Integrated gasification combined cycle

kWh:

Kilowatt hour

LCA:

Life-cycle assessment

MAG:

Methanol-to-gasoline

MAS:

Mixed alcohol synthesis

MJ:

Megajoule

MTE:

Methanol-to-ethanol

MW:

Megawatt

MWe:

Megawatt electric

MWh:

Megawatt hour

ORC:

Organic Rankine cycle

PC:

Pulverized coal-fired

RFS2:

Revised renewable fuel standard

RME:

Rapeseed methyl ester

S2D:

Syngas-to-distillates

SF:

Syngas fermentation

SNG:

Synthetic natural gas

TEA:

Techno-economic analysis

References

  • Abubackar HN, Veiga MC, Kennes C (2011) Biological conversion of carbon monoxide: rich syngas or waste gases to bioethanol. Biofuels Bioprod Biorefin 5:93–114

    Article  CAS  Google Scholar 

  • Agbor E, Zhang X, Kumar A (2014) A review of biomass co-firing in North America. Renew Sust Energ Rev 40:930–943

    Article  CAS  Google Scholar 

  • Akhtar J, Amin NAS (2011) A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renew Sust Energ Rev 15(3):1615–1624

    Article  CAS  Google Scholar 

  • Alauddin ZABZ, Lahijani P, Mohammadi M, Mohamed AR (2010) Gasification of lignocellulosic biomass in fluidized beds for renewable energy development: a review. Renew Sust Energ Rev 14:2852–2862

    Article  CAS  Google Scholar 

  • Amigun B, Gorgens J, Knoetze H (2010) Biomethanol production from gasification of non-woody plant in South Africa: optimum scale and economic performance. Energy Policy 38:312–322

    Article  CAS  Google Scholar 

  • Anex RP, Aden A, Kazi FK, Fortman J, Swanson RM, Wright MM, Satrio JA, Brown RC, Daugaard DE, Platon A, Kothandaraman G, Hsu DD, Dutta A (2010) Techno-economic comparison of biomass-to-transportation fuels via pyrolysis, gasification, and biochemical pathways. Fuel 89:S29–S35

    Article  CAS  Google Scholar 

  • Arce ME, Saavedra Á, Míguez JL, Granada E, Cacabelos A (2013) Biomass fuel and combustion conditions selection in a fixed bed combustor. Energies 6(11):5973–5989

    Article  CAS  Google Scholar 

  • Boucher M, Chaala A, Pakdel H, Roy C (2000) Bio-oils obtained by vacuum pyrolysis of softwood bark as a liquid fuel for gas turbines. Part II: stability and ageing of bio-oil and its blends with methanol and a pyrolytic aqueous phase. Biomass Bioenergy 19:351–361

    Article  CAS  Google Scholar 

  • Bridgwater A (1995) The technical and economic feasibility of biomass gasification for power generation. Fuel 74(5):631–653

    Article  CAS  Google Scholar 

  • Bridgwater AV, Meier D, Radlein D (1999) An overview of fast pyrolysis of biomass. Org Geochem 30(12):1479–1493

    Article  CAS  Google Scholar 

  • Bridgwater A, Toft A, Brammer J (2002) A techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion. Renew Sust Energ Rev 6(3):181–246

    Article  CAS  Google Scholar 

  • Brown TR (2015) A techno-economic review of thermochemical cellulosic biofuel pathways. Bioresour Technol 178:166–176

    Article  CAS  PubMed  Google Scholar 

  • Brown RC, Brown TR (2013) Biorenewable resources: engineering new products from agriculture. Wiley, Hoboken

    Google Scholar 

  • Brown TR, Thilakaratne R, Brown RC, Hu G (2013) Techno-economic analysis of biomass to transportation fuels and electricity via fast pyrolysis and hydroprocessing. Fuel 106:463–469

    Article  CAS  Google Scholar 

  • Carlson TR, Tompsett GA, Conner WC, Huber GW (2009) Aromatic production from catalytic fast pyrolysis of biomass-derived feedstocks. Top Catal 52:241–252

    Article  CAS  Google Scholar 

  • Cormos C-C (2013) Assessment of flexible energy vectors poly-generation based on coal and biomass/solid wastes co-gasification with carbon capture. Int J Hydrog Energy 38:7855–7866

    Article  CAS  Google Scholar 

  • Damartzis T, Zabaniotou A (2011) Thermochemical conversion of biomass to second generation biofuels through integrated process design—a review. Renew Sust Energ Rev 15(1):366–378

    Article  CAS  Google Scholar 

  • De S, Assadi M (2009) Impact of cofiring biomass with coal in power plants–a techno-economic assessment. Biomass Bioenergy 33:283–293

    Article  CAS  Google Scholar 

  • Demirbas A (2001) Biomass resource facilities and biomass conversion. Elsevier, Amsterdam

    Google Scholar 

  • Demirbas A (2007) Producing bio-oil from olive cake by fast pyrolysis. Energ Sources A 30:38–44

    Article  CAS  Google Scholar 

  • Domenichini R, Gasparini F, Cotone P, Santos S (2011) Techno-economic evaluation of biomass fired or co-fired power plants with post combustion CO2 capture. Energy Proc 4:1851–1860

    Article  Google Scholar 

  • Faix A, Schweinle J, Schöll S, Becker G, Meier D (2010) (GTI-tcbiomass) life-cycle assessment of the BTO®-process (biomass-to-oil) with combined heat and power generation. Environ Prog Sustain Energy 29:193–202

    Article  CAS  Google Scholar 

  • Fan J, Kalnes TN, Alward M, Klinger J, Sadehvandi A, Shonnard DR (2011) Life cycle assessment of electricity generation using fast pyrolysis bio-oil. Renew Energy 36:632–641

    Article  CAS  Google Scholar 

  • Fischer B, Pigneri A (2011) Potential for electrification from biomass gasification in Vanuatu. Energy 36(3):1640–1651

    Article  Google Scholar 

  • Gabrielle B, Gagnaire N (2008) Life-cycle assessment of straw use in bio-ethanol production: a case study based on biophysical modelling. Biomass Bioenergy 32:431–441

    Article  CAS  Google Scholar 

  • Ganesh A, Banerjee R (2001) Biomass pyrolysis for power generation—a potential technology. Renew Energy 22:9–14

    Article  CAS  Google Scholar 

  • Gnansounou E, Dauriat A (2010) Techno-economic analysis of lignocellulosic ethanol: a review. Bioresour Technol 101:4980–4991

    Article  CAS  PubMed  Google Scholar 

  • Graham R, Bergougnou M, Overend R (1984) Fast pyrolysis of biomass. J Anal Appl Pyrolysis 6:95–135

    Article  CAS  Google Scholar 

  • Guest G, Bright RM, Cherubini F, Michelsen O, Strømman AH (2011) Life cycle assessment of biomass-based combined heat and power plants. J Ind Ecol 15:908–921

    Article  Google Scholar 

  • Han J, Elgowainy A, Dunn JB, Wang MQ (2013) Life cycle analysis of fuel production from fast pyrolysis of biomass. Bioresour Technol 133:421–428

    Article  CAS  PubMed  Google Scholar 

  • Haro P, Trippe F, Stahl R, Henrich E (2013) Bio-syngas to gasoline and olefins via DME–a comprehensive techno-economic assessment. Appl Energy 108:54–65

    Article  CAS  Google Scholar 

  • Hein K, Bemtgen J (1998) EU clean coal technology—co-combustion of coal and biomass. Fuel Process Technol 54:159–169

    Article  CAS  Google Scholar 

  • Heller MC, Keoleian GA, Mann MK, Volk TA (2004) Life cycle energy and environmental benefits of generating electricity from willow biomass. Renew Energy 29:1023–1042

    Article  CAS  Google Scholar 

  • Hsu DD (2012) Life cycle assessment of gasoline and diesel produced via fast pyrolysis and hydroprocessing. Biomass Bioenergy 45:41–47

    Article  CAS  Google Scholar 

  • Huang Y, Mcllveen-Wright D (2006) Biomass co-firing in a PFBC combined cycle power plant: a techno-environmental assessment based on computational simulations. Fuel Process Technol 87:927–934

    Article  CAS  Google Scholar 

  • Huang Y, McIlveen-Wright D, Rezvani S, Huang M, Wang Y, Roskilly A, Hewitt N (2013) Comparative techno-economic analysis of biomass fuelled combined heat and power for commercial buildings. Appl Energy 112:518–525

    Article  CAS  Google Scholar 

  • Iribarren D, Peters JF, Dufour J (2012) Life cycle assessment of transportation fuels from biomass pyrolysis. Fuel 97:812–821

    Article  CAS  Google Scholar 

  • Isahak WNRW, Hisham MW, Yarmo MA, Hin T-YY (2012) A review on bio-oil production from biomass by using pyrolysis method. Renew Sust Energ Rev 16:5910–5923

    Article  CAS  Google Scholar 

  • Jones SB, Valkenburt C, Walton CW, Elliott DC, Holladay JE, Stevens DJ, Kinchin C, Czernik S (2009) Production of gasoline and diesel from biomass via fast pyrolysis, hydrotreating and hydrocracking: a design case. Pacific Northwest National Laboratory (PNNL), Richland

    Google Scholar 

  • Kauffman N, Hayes D, Brown R (2011) A life cycle assessment of advanced biofuel production from a hectare of corn. Fuel 90:3306–3314

    Article  CAS  Google Scholar 

  • Kebelmann K, Hornung A, Karsten U, Griffiths G (2013) Intermediate pyrolysis and product identification by TGA and Py-GC/MS of green microalgae and their extracted protein and lipid components. Biomass Bioenergy 49:38–48

    Article  CAS  Google Scholar 

  • Kimming M, Sundberg C, Nordberg Å, Baky A, Bernesson S, Norén O, Hansson P-A (2011) Biomass from agriculture in small-scale combined heat and power plants–a comparative life cycle assessment. Biomass Bioenergy 35:1572–1581

    Article  CAS  Google Scholar 

  • Koroneos C, Dompros A, Roumbas G (2008) Hydrogen production via biomass gasification—a life cycle assessment approach. Chem Eng Process:Process Intens 47:1261–1268

    Article  CAS  Google Scholar 

  • Kumar M, Gupta R, Sharma T (1992) Effects of carbonisation conditions on the yield and chemical composition of Acacia and Eucalyptus wood chars. Biomass Bioenergy 3:411–417

    Article  CAS  Google Scholar 

  • Kumar A, Bhattacharya SC, Pham H-L (2003a) Greenhouse gas mitigation potential of biomass energy technologies in Vietnam using the long range energy alternative planning system model. Energy 28:627–654

    Article  CAS  Google Scholar 

  • Kumar A, Cameron JB, Flynn PC (2003b) Biomass power cost and optimum plant size in western Canada. Biomass Bioenergy 24:445–464

    Article  Google Scholar 

  • Kumar A, Kumar N, Baredar P, Shukla A (2015) A review on biomass energy resources, potential, conversion and policy in India. Renew Sust Energ Rev 45:530–539

    Article  Google Scholar 

  • Lane J (2013) Gusher! KiOR starts production of US cellulosic biofuels at scale. Biofuel Digest. http://www.biofuelsdigest.com/bdigest/2012/11/09/gusher-kior-starts-production-of-us-cellulosic-biofuels-at-scale/

  • Lange M (2011) The GHG balance of biofuels taking into account land use change. Energy Policy 39(5):2373–2385

    Article  CAS  Google Scholar 

  • Lédé J (2003) Comparison of contact and radiant ablative pyrolysis of biomass. J Anal Appl Pyrolysis 70:601–618

    Article  CAS  Google Scholar 

  • Liden A, Berruti F, Scott D (1988) A kinetic model for the production of liquids from the flash pyrolysis of biomass. Chem Eng Commun 65:207–221

    Article  CAS  Google Scholar 

  • Liu T, McConkey B, Ma Z, Liu Z, Li X, Cheng L (2011) Strengths, weakness, opportunities and threats analysis of bioenergy production on marginal land. Energy Proc 5:2378–2386

    Article  Google Scholar 

  • López-Bellido L, Wery J, López-Bellido RJ (2014) Energy crops: prospects in the context of sustainable agriculture. Eur J Agron 60:1–12

    Article  Google Scholar 

  • Lu Q, Dong C-Q, Zhang X-M, Tian H-Y, Yang Y-P, Zhu X-F (2011) Selective fast pyrolysis of biomass impregnated with ZnCl2 to produce furfural: analytical Py-GC/MS study. J Anal Appl Pyrolysis 90:204–212

    Article  CAS  Google Scholar 

  • Maggi R, Delmon B (1994) Comparison between ‘slow’ and ‘flash’ pyrolysis oils from biomass. Fuel 73:671–677

    Article  CAS  Google Scholar 

  • Mann M, Spath P (2001) A life cycle assessment of biomass cofiring in a coal-fired power plant. Clean Technol Environ Pol 3:81–91

    Google Scholar 

  • Martínez E, Sanz F, Pellegrini S, Jiménez E, Blanco J (2009) Life cycle assessment of a multi-megawatt wind turbine. Renew Energy 34:667–673

    Article  Google Scholar 

  • McIlveen-Wright D, Pinto F, Armesto L, Caballero M, Aznar M, Cabanillas A, Huang Y, Franco C, Gulyurtlu I, McMullan J (2006) A comparison of circulating fluidised bed combustion and gasification power plant technologies for processing mixtures of coal, biomass and plastic waste. Fuel Process Technol 87:793–801

    Article  CAS  Google Scholar 

  • Meerman J, Knoope M, Ramírez A, Turkenburg W, Faaij A (2013) Technical and economic prospects of coal-and biomass-fired integrated gasification facilities equipped with CCS over time. Int J Greenh Gas Cont 16:311–323

    Article  CAS  Google Scholar 

  • Menten F, Chèze B, Patouillard L, Bouvart F (2013) A review of LCA greenhouse gas emissions results for advanced biofuels: the use of meta-regression analysis. Renew Sust Energ Rev 26:108–134

    Article  CAS  Google Scholar 

  • Mohan D et al (2014) Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent–a critical review. Bioresour Technol 160:191–202

    Article  CAS  PubMed  Google Scholar 

  • Muench S, Guenther E (2013) A systematic review of bioenergy life cycle assessments. Appl Energy 112:257–273

    Article  Google Scholar 

  • Nguyen TLT, Hermansen JE, Mogensen L (2013) Environmental performance of crop residues as an energy source for electricity production: the case of wheat straw in Denmark. Appl Energy 104:633–641

    Article  CAS  Google Scholar 

  • Nussbaumer T (2003) Combustion and co-combustion of biomass: fundamentals, technologies, and primary measures for emission reduction. Energy Fuel 17:1510–1521

    Article  CAS  Google Scholar 

  • Parthasarathy P, Narayanan KS (2014) Hydrogen production from steam gasification of biomass: influence of process parameters on hydrogen yield–a review. Renew Energy 66:570–579

    Article  CAS  Google Scholar 

  • Patel RN, Bandyopadhyay S, Ganesh A (2011) Extraction of cardanol and phenol from bio-oils obtained through vacuum pyrolysis of biomass using supercritical fluid extraction. Energy 36:1535–1542

    Article  CAS  Google Scholar 

  • Patel M, Zhang X, Kumar A (2016) Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: a review. Renew Sust Energ Rev 53:1486–1499

    Article  CAS  Google Scholar 

  • Peacocke GV (1994) Ablative pyrolysis of biomass. PhD thesis, Aston University, UK

    Google Scholar 

  • Périlhon C, Alkadee D, Descombes G, Lacour S (2012) Life cycle assessment applied to electricity generation from renewable biomass. Energ Proc 18:165–176

    Article  CAS  Google Scholar 

  • Phillips SD, Tarud JK, Biddy MJ, Dutta A (2011) Gasoline from woody biomass via thermochemical gasification, methanol synthesis, and methanol-to-gasoline technologies: a technoeconomic analysis. Ind Eng Chem Res 50:11734–11745

    Article  CAS  Google Scholar 

  • Piccolo C, Bezzo F (2009) A techno-economic comparison between two technologies for bioethanol production from lignocellulose. Biomass Bioenergy 33:478–491

    Article  CAS  Google Scholar 

  • Rafaschieri A, Rapaccini M, Manfrida G (1999) Life cycle assessment of electricity production from poplar energy crops compared with conventional fossil fuels. Energ Convers Manag 40:1477–1493

    Article  CAS  Google Scholar 

  • Rathmann R, Szklo A, Schaeffer R (2010) Land use competition for production of food and liquid biofuels: an analysis of the arguments in the current debate. Renew Energy 35:14–22

    Article  Google Scholar 

  • Reza MT, Andert J, Wirth B, Busch D, Pielert J, Lynam JG, Mumme J (2014) Hydrothermal carbonization of biomass for energy and crop production. Appl Bioenerg 1:11–29

    Google Scholar 

  • Roberts KG, Gloy BA, Joseph S, Scott NR, Lehmann J (2009) Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential. Environ Sci Technol 44:827–833

    Article  CAS  Google Scholar 

  • Rodrigues M, Faaij AP, Walter A (2003) Techno-economic analysis of co-fired biomass integrated gasification/combined cycle systems with inclusion of economies of scale. Energy 28:1229–1258

    Article  CAS  Google Scholar 

  • Rogers J, Brammer JG (2012) Estimation of the production cost of fast pyrolysis bio-oil. Biomass Bioenergy 36:208–217

    Article  CAS  Google Scholar 

  • Royo J, Sebastián F, Canalís P, Rodríguez N (2004) The torsional chamber as an alternative to the technologies usually employed in biomass co-firing. In: Proceedings of power gen Europe

    Google Scholar 

  • Samolada M, Vasalos I (1991) A kinetic approach to the flash pyrolysis of biomass in a fluidized bed reactor. Fuel 70:883–889

    Article  CAS  Google Scholar 

  • Sarkar S, Kumar A (2010a) Biohydrogen production from forest and agricultural residues for upgrading of bitumen from oil sands. Energy 35:582–591

    Article  CAS  Google Scholar 

  • Sarkar S, Kumar A (2010b) Large-scale biohydrogen production from bio-oil. Bioresour Technol 101:7350–7361

    Article  CAS  PubMed  Google Scholar 

  • Sarkar S, Kumar A, Sultana A (2011) Biofuels and biochemicals production from forest biomass in Western Canada. Energy 36:6251–6262

    Article  CAS  Google Scholar 

  • Savolainen K (2003) Co-firing of biomass in coal-fired utility boilers. Appl Energy 74:369–381

    Article  CAS  Google Scholar 

  • Schenck R (2009) Introduction to lifecycle assessment scoping & inventory. US EPA Region X, American Center for Lifecycle Assessment, Washington, DC

    Google Scholar 

  • Scott DS, Piskorz J (1984) The continuous flash pyrolysis of biomass. Can J Chem Eng 62:404–412

    Article  CAS  Google Scholar 

  • Scott DS, Piskorz J, Radlein D (1985) Liquid products from the continuous flash pyrolysis of biomass. Ind Eng Chem Process Des Dev 24:581–588

    Article  CAS  Google Scholar 

  • Sebastián F, Royo J, Gómez M (2011) Cofiring versus biomass-fired power plants: GHG (Greenhouse Gases) emissions savings comparison by means of LCA (Life Cycle Assessment) methodology. Energy 36:2029–2037

    Article  Google Scholar 

  • Sevilla M, Macia-Agullo JA, Fuertes AB (2011) Hydrothermal carbonization of biomass as a route for the sequestration of CO2: chemical and structural properties of the carbonized products. Biomass Bioenergy 35:3152–3159

    Article  CAS  Google Scholar 

  • Shabangu S, Woolf D, Fisher EM, Angenent LT, Lehmann J (2014) Techno-economic assessment of biomass slow pyrolysis into different biochar and methanol concepts. Fuel 117:742–748

    Article  CAS  Google Scholar 

  • Shadangi KP, Mohanty K (2014a) Comparison of yield and fuel properties of thermal and catalytic Mahua seed pyrolytic oil. Fuel 117:372–380

    Article  CAS  Google Scholar 

  • Shadangi KP, Mohanty K (2014b) Thermal and catalytic pyrolysis of Karanja seed to produce liquid fuel. Fuel 115:434–442

    Article  CAS  Google Scholar 

  • Shadangi KP, Singh RK (2012) Thermolysis of polanga seed cake to bio-oil using semi batch reactor. Fuel 97:450–456

    Article  CAS  Google Scholar 

  • Shafie S, Mahlia T, Masjuki H, Rismanchi B (2012) Life cycle assessment (LCA) of electricity generation from rice husk in Malaysia. Energy Proc 14:499–504

    Article  CAS  Google Scholar 

  • Shafie S, Mahlia T, Masjuki H (2013) Life cycle assessment of rice straw co-firing with coal power generation in Malaysia. Energy 57:284–294

    Article  Google Scholar 

  • Sharma A, Unni BG, Singh HD (1999) A novel fed-batch digestion system for biomethanation of plant biomasses. J Biosci Bioeng 87:678–682

    Article  CAS  PubMed  Google Scholar 

  • Sınaǧ A, Kruse A, Rathert J (2004) Influence of the heating rate and the type of catalyst on the formation of key intermediates and on the generation of gases during hydropyrolysis of glucose in supercritical water in a batch reactor. Ind Eng Chem Res 43:502–508

    Article  CAS  Google Scholar 

  • Singh A, Pant D, Korres NE, Nizami A-S, Prasad S, Murphy JD (2010) Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: challenges and perspectives. Bioresour Technol 101:5003–5012

    Article  CAS  PubMed  Google Scholar 

  • Skowrońska M, Filipek T (2014) Life cycle assessment of fertilizers: a review. Int Agrophysics 28:101–110

    Article  Google Scholar 

  • Solli C, Reenaas M, Strømman AH, Hertwich EG (2009) Life cycle assessment of wood-based heating in Norway. Int J Life Cycle Assess 14:517–528

    Article  CAS  Google Scholar 

  • Spliethoff H, Hein K (1998) Effect of co-combustion of biomass on emissions in pulverized fuel furnaces. Fuel Process Technol 54:189–205

    Article  CAS  Google Scholar 

  • Strezov V, Patterson M, Zymla V, Fisher K, Evans TJ, Nelson PF (2007) Fundamental aspects of biomass carbonisation. J Anal Appl Pyrolysis 79:91–100

    Article  CAS  Google Scholar 

  • Swanson RM, Platon A, Satrio JA, Brown RC (2010) Techno-economic analysis of biomass-to-liquids production based on gasification. Fuel 89:S11–S19

    Article  CAS  Google Scholar 

  • Thakur A, Canter CE, Kumar A (2014) Life-cycle energy and emission analysis of power generation from forest biomass. Appl Energy 128:246–253

    Article  CAS  Google Scholar 

  • Thangalazhy-Gopakumar S, Adhikari S, Ravindran H, Gupta RB, Fasina O, Tu M, Fernando SD (2010) Physiochemical properties of bio-oil produced at various temperatures from pine wood using an auger reactor. Bioresour Technol 101:8389–8395

    Article  CAS  PubMed  Google Scholar 

  • Thilakaratne R, Brown T, Li Y, Hu G, Brown R (2014) Mild catalytic pyrolysis of biomass for production of transportation fuels: a techno-economic analysis. Green Chem 16:627–636

    Article  CAS  Google Scholar 

  • Trippe F, Fröhling M, Schultmann F, Stahl R, Henrich E (2010) Techno-economic analysis of fast pyrolysis as a process step within biomass-to-liquid fuel production. Waste Biomass Valor 1:415–430

    Article  Google Scholar 

  • Trippe F, Fröhling M, Schultmann F, Stahl R, Henrich E, Dalai A (2013) Comprehensive techno-economic assessment of dimethyl ether (DME) synthesis and Fischer–Tropsch synthesis as alternative process steps within biomass-to-liquid production. Fuel Process Technol 106:577–586

    Article  CAS  Google Scholar 

  • Valle CR, Perales AV, Vidal-Barrero F, Gómez-Barea A (2013) Techno-economic assessment of biomass-to-ethanol by indirect fluidized bed gasification: impact of reforming technologies and comparison with entrained flow gasification. Appl Energy 109:254–266

    Article  CAS  Google Scholar 

  • Wang G, Silva R, Azevedo J, Martins-Dias S, Costa M (2014) Evaluation of the combustion behaviour and ash characteristics of biomass waste derived fuels, pine and coal in a drop tube furnace. Fuel 117:809–824

    Article  CAS  Google Scholar 

  • Williams PT, Besler S (1993) The pyrolysis of rice husks in a thermogravimetric analyser and static batch reactor. Fuel 72:151–159

    Article  CAS  Google Scholar 

  • Williams PT, Besler S (1996) The influence of temperature and heating rate on the slow pyrolysis of biomass. Renew Energ 7:233–250

    Article  CAS  Google Scholar 

  • Woolcock PJ, Brown RC (2013) A review of cleaning technologies for biomass-derived syngas. Biomass Bioenergy 52:54–84

    Article  CAS  Google Scholar 

  • Wright MM, Daugaard DE, Satrio JA, Brown RC (2010) Techno-economic analysis of biomass fast pyrolysis to transportation fuels. Fuel 89:S2–S10

    Article  CAS  Google Scholar 

  • Xianwen D, Chuangzhi W, Haibin L, Yong C (2000) The fast pyrolysis of biomass in CFB reactor. Energy Fuel 14:552–557

    Article  CAS  Google Scholar 

  • Xu Y, Wang T, Ma L, Zhang Q, Wang L (2009) Upgrading of liquid fuel from the vacuum pyrolysis of biomass over the Mo–Ni/γ-Al2O3 catalysts. Biomass Bioenergy 33:1030–1036

    Article  CAS  Google Scholar 

  • Zhang B, von Keitz M, Valentas K (2009) Thermochemical liquefaction of high-diversity grassland perennials. J Anal Appl Pyrolysis 84:18–24

    Article  CAS  Google Scholar 

  • Zhang Y, Brown TR, Hu G, Brown RC (2013) Comparative techno-economic analysis of biohydrogen production via bio-oil gasification and bio-oil reforming. Biomass Bioenergy 51:99–108

    Article  CAS  Google Scholar 

  • Zhong Z, Song B, Zaki M (2010) Life-cycle assessment of flash pyrolysis of wood waste. J Clean Prod 18:1177–1183

    Article  CAS  Google Scholar 

  • Zhou J, Chen Q, Zhao H, Cao X, Mei Q, Luo Z, Cen K (2009) Biomass–oxygen gasification in a high-temperature entrained-flow gasifier. Biotechnol Adv 27:606–611

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Jones SB (2009) Techno-economic analysis for the thermochemical conversion of lignocellulosic biomass to ethanol via acetic acid synthesis. Pacific Northwest National Laboratory (PNNL), Richland

    Book  Google Scholar 

  • Zhu Y, Jones SB, Biddy MJ, Dagle RA, Palo DR (2012) Single-step syngas-to-distillates (S2D) process based on biomass-derived syngas–a techno-economic analysis. Bioresour Technol 117:341–351

    Article  CAS  PubMed  Google Scholar 

  • Zuwala J, Sciazko M (2010) Full-scale co-firing trial tests of sawdust and bio-waste in pulverized coal-fired 230t/h steam boiler. Biomass Bioenergy 34:1165–1174

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaustubha Mohanty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishra, R.K., Mohanty, K. (2018). An Overview of Techno-economic Analysis and Life-Cycle Assessment of Thermochemical Conversion of Lignocellulosic Biomass. In: Sarangi, P., Nanda, S., Mohanty, P. (eds) Recent Advancements in Biofuels and Bioenergy Utilization. Springer, Singapore. https://doi.org/10.1007/978-981-13-1307-3_15

Download citation

Publish with us

Policies and ethics