Skip to main content

A Review on Pyrolysis of Biomass and the Impacts of Operating Conditions on Product Yield, Quality, and Upgradation

  • Chapter
  • First Online:
Recent Advancements in Biofuels and Bioenergy Utilization

Abstract

Pyrolysis is a thermochemical conversion process where biomass is converted into liquid (bio-oil), solid (bio-char), and gaseous products (pyro-gas) under oxygen-depleted condition due to the application of heat. The composition and yield of pyrolysis products depend upon the operating parameters of the pyrolysis process and types of biomass. In pyrolysis process, it is essential to explore the effect of operating parameters on product yield and instinct about their optimization. The present study reviews the influence of operating parameters on product yield from existing literature on the pyrolysis biomass as well as product characterization and upgrading. The major operating parameters include pyrolysis temperature, heating rate, sweeping gas flow rate, and particle size of biomass. The study concludes that most biomass residues are suitable for pyrolysis and all the operating parameters play an important role in the yield of products and their characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawalla A, Kumar S, Singh RK (2012) Pyrolysis of groundnut de-oiled cake and characterization of the liquid product. Bioresour Technol 102:10711–10716

    Article  CAS  Google Scholar 

  • Akhtar J, Amin NS (2012) A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. Renew Sust Energ Rev 16:5101–5109

    Article  CAS  Google Scholar 

  • Alagu RM, Sundaram EG, Natarajan E (2015) Thermal and catalytic slow pyrolysis of Calophyllum inophyllum fruit shell. Bioresour Technol 193:463–468

    Article  CAS  PubMed  Google Scholar 

  • Alper K, Tekin K, Karagöz S (2015) Pyrolysis of agricultural residues for bio-oil production. Clean Technol Environ Policy 17:211–223

    Article  CAS  Google Scholar 

  • Apaydin-Varol E, Pütün E, Pütün AE (2007) Slow pyrolysis of pistachio shell. Fuel 86:1892–1899

    Article  CAS  Google Scholar 

  • AteÅŸ F, Pütün E, Pütün AE (2004) Fast pyrolysis of sesame stalk: yields and structural analysis of bio-oil. J Anal Appl Pyrolysis 71:779–790

    Article  CAS  Google Scholar 

  • Augustínová J, CvengroÅ¡ová Z, Mikulec J, Vasilkovová B, CvengroÅ¡ J (2013) Upgrading of biooil from fast pyrolysis. In: 46th international conference on petroleum processing. 7 June

    Google Scholar 

  • Aysu T (2015) Catalytic pyrolysis of Eremurus spectabilis for bio-oil production in a fixed-bed reactor: effects of pyrolysis parameters on product yields and character. Fuel Process Technol 129:24–38

    Article  CAS  Google Scholar 

  • Aysu T, Durak H (2015) Catalytic pyrolysis of liquorice (Glycyrrhiza glabra L.) in a fixed-bed reactor: effects of pyrolysis parameters on product yields and character. J Anal Appl Pyrolysis 111:156–172

    Article  CAS  Google Scholar 

  • Aysu T, Küçük MM (2014) Biomass pyrolysis in a fixed-bed reactor: effects of pyrolysis parameters on product yields and characterization of products. Energy 64:1002–1025

    Article  CAS  Google Scholar 

  • Aysu T, Durak H, Güner S, Bengü AÅž, Esim N (2016) Bio-oil production via catalytic pyrolysis of Anchusa azurea: effects of operating conditions on product yields and chromatographic characterization. Bioresour Technol 205:7–14

    Article  CAS  PubMed  Google Scholar 

  • Azduwin K, Ridzuan MJ, Hafis SM, Amran T (2012) Slow pyrolysis of Imperata cylindrica in a fixed bed reactor. Int J Biol Ecol Environ Sci 1:176–180

    Google Scholar 

  • Babu BV (2008) Biomass pyrolysis: a state-of-the-art review. Biofuels Bioprod Biorefin 2:393–414

    Article  CAS  Google Scholar 

  • Balat H, Kırtay E (2010) Hydrogen from biomass–present scenario and future prospects. Int J Hydrog Energy 35:7416–7426

    Article  CAS  Google Scholar 

  • Beis SH, Onay Ö, Koçkar ÖM (2002) Fixed-bed pyrolysis of safflower seed: influence of pyrolysis parameters on product yields and compositions. Renew Energy 26:21–32

    Article  CAS  Google Scholar 

  • Biswas B, Pandey N, Bisht Y, Singh R, Kumar J, Bhaskar T (2017) Pyrolysis of agricultural biomass residues: comparative study of corn cob, wheat straw, rice straw and rice husk. Bioresour Technol 237:57–63

    Article  CAS  PubMed  Google Scholar 

  • Bordoloi N, Narzari R, Chutia RS, Bhaskar T, Kataki R (2015) Pyrolysis of Mesua ferrea and Pongamia glabra seed cover: characterization of bio-oil and its sub-fractions. Bioresour Technol 178:83–89

    Article  CAS  PubMed  Google Scholar 

  • Bridgwater AV (2003) Renewable fuels and chemicals by thermal processing of biomass. Chem Eng J 91:87–102

    Article  CAS  Google Scholar 

  • Bridgwater AV (2012) Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 38:68–94

    Article  CAS  Google Scholar 

  • Bridgwater AV, Peacocke GV (2000) Fast pyrolysis processes for biomass. Renew Sust Energ Rev 4:1–73

    Article  CAS  Google Scholar 

  • Bridgwater AV, Toft AJ, Brammer JG (2002) A techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion. Renew Sust Energ Rev 6:181–246

    Article  CAS  Google Scholar 

  • Centeno A, Maggi R, Delmon B (1999) Use of noble metals in hydrodeoxygenation reactions. Stud Surf Sci Catal 127:77–84

    Article  CAS  Google Scholar 

  • Chan KY, Xu Z (2009) Biochar: nutrient properties and their enhancement. Biochar Environ Manag Sci Technol 1:67–84

    Google Scholar 

  • Chiaramonti D, Bonini M, Fratini E, Tondi G, Gartner K, Bridgwater AV, Grimm HP, Soldaini I, Webster A, Baglioni P (2003) Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines-part 1: emulsion production. Biomass Bioenergy 25:85–99

    Article  CAS  Google Scholar 

  • Chirakkara RA, Reddy KR (2015) Biomass and chemical amendments for enhanced phytoremediation of mixed contaminated soils. Ecol Eng 85:265–274

    Article  Google Scholar 

  • Choudhury ND, Chutia RS, Bhaskar T, Kataki R (2014) Pyrolysis of jute dust: effect of reaction parameters and analysis of products. J Mater Cycles Waste Manag 16:449–459

    Article  CAS  Google Scholar 

  • Chouhan APS (2015) A slow pyrolysis of cotton stalk (Gossypium arboretum) waste for bio-oil production. J Pharma Chem Biol Sci 3:143–149

    CAS  Google Scholar 

  • Chukwuneke JL, Sinebe JE, Ugwuegbu DC, Agulonu CC (2016) Production by pyrolysis and analysis of bio-oil from mahogany wood (Swietenia macrophylla). Brit J Appl Sci Technol 17:1–9

    Article  Google Scholar 

  • Chutia RS, Kataki R, Bhaskar T (2014) Characterization of liquid and solid product from pyrolysis of Pongamia glabra deoiled cake. Bioresour Technol 165:336–342

    Article  CAS  PubMed  Google Scholar 

  • Collard FX, Blin J (2014) A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew Sust Energ Rev 38:594–608

    Article  CAS  Google Scholar 

  • Cui HY, Wang JH, Zhuo SP, Li ZH, Wang LH, Yi WM (2010) Upgrading bio-oil by esterification under supercritical CO2 conditions. J Fuel Chem Technol 38:673–678

    Article  CAS  Google Scholar 

  • Dalai AK, Bassi A (2010) Bioenergy and green engineering. Energy Fuel 24:4627

    Article  CAS  Google Scholar 

  • Demiral Ä°, Ayan EA (2011) Pyrolysis of grape bagasse: effect of pyrolysis conditions on the product yields and characterization of the liquid product. Bioresour Technol 102:3946–3951

    Article  CAS  PubMed  Google Scholar 

  • Demiral Ä°, Kul ŞÇ (2014) Pyrolysis of apricot kernel shell in a fixed-bed reactor: characterization of bio-oil and char. J Anal Appl Pyrolysis 107:17–24

    Article  CAS  Google Scholar 

  • Demiral Ä°, Åžensöz S (2006) Fixed-bed pyrolysis of hazelnut (Corylus avellana L.) bagasse: influence of pyrolysis parameters on product yields. Energy Sources Part A 28:1149–1158

    Article  CAS  Google Scholar 

  • DemirbaÅŸ A (2002) Analysis of liquid products from biomass via flash pyrolysis. Energy Sour 24:337–345

    Article  Google Scholar 

  • Demirbas A (2008) Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Convers Manag 49:2106–2116

    Article  CAS  Google Scholar 

  • Dhyani V, Bhaskar T (2017) A comprehensive review on the pyrolysis of lignocellulosic biomass. Renew Energy. https://doi.org/10.1016/j.renene.2017.04.035

    Article  CAS  Google Scholar 

  • Durak H (2016) Pyrolysis of Xanthium strumarium in a fixed bed reactor: effects of boron catalysts and pyrolysis parameters on product yields and character. Energy Sources Part A 38:1400–1409

    Article  CAS  Google Scholar 

  • Encinar JM, Gonzalez JF, Gonzalez J (2000) Fixed-bed pyrolysis of Cynara cardunculus L. product yields and compositions. Fuel Process Technol 68:209–222

    Article  CAS  Google Scholar 

  • Farid NA (2006) Fast pyrolysis of bioresources into energy and other applications. In: Proceedings of the seminar on energy from biomass 2006. Conversion of bioresources into energy and other applications, Forest Research Institute Malaysia (FRIM), Kepong, pp 27–37.

    Google Scholar 

  • Fu Q, Argyropoulos DS, Tilotta DC, Lucia LA (2008) Understanding the pyrolysis of CCA-treated wood: Part II. Effect of phosphoric acid. J Anal Appl Pyrolysis 82:140–144

    Article  CAS  Google Scholar 

  • Garcia-Perez M, Chaala A, Roy C (2002) Co-pyrolysis of sugarcane bagasse with petroleum residue. Part II. Product yields and properties. Fuel 81:893–907

    Article  CAS  Google Scholar 

  • Garg R, Anand N, Kumar D (2016) Pyrolysis of babool seeds (Acacia nilotica) in a fixed bed reactor and bio-oil characterization. Renew Energy 96:167–171

    Article  CAS  Google Scholar 

  • Gercel HF (2002) The production and evaluation of bio-oils from the pyrolysis of sunflower-oil cake. Biomass Bioenergy 23:307–314

    Article  CAS  Google Scholar 

  • Haykiri-Acma H (2006) The role of particle size in the non-isothermal pyrolysis of hazelnut shell. J Anal Appl Pyrolysis 75:211–216

    Article  CAS  Google Scholar 

  • Haykiri-Acma H, Yaman S, Kucukbayrak S (2006) Gasification of biomass chars in steam–nitrogen mixture. Energy Convers Manag 47:1004–1013

    Article  CAS  Google Scholar 

  • Henkel C, Muley PD, Abdollahi KK, Marculescu C, Boldor D (2016) Pyrolysis of energy cane bagasse and invasive Chinese tallow tree (Triadica sebifera L.) biomass in an inductively heated reactor. Energy Convers Manag 109:175–183

    Article  CAS  Google Scholar 

  • Ikura M, Stanciulescu M, Hogan E (2003) Emulsification of pyrolysis derived bio-oil in diesel fuel. Biomass Bioenergy 24:221–232

    Article  CAS  Google Scholar 

  • Imam T, Capareda S (2012) Characterization of bio-oil, syn-gas and bio-char from switchgrass pyrolysis at various temperatures. J Anal Appl Pyrolysis 93:170–177

    Article  CAS  Google Scholar 

  • Isahak WN, Hisham MW, Yarmo MA, Hin TY (2012) A review on bio-oil production from biomass by using pyrolysis method. Renew Sust Energ Rev 16:5910–5923

    Article  CAS  Google Scholar 

  • Islam MR, Haniu H, Islam MN, Uddin MS (2010) Thermochemical conversion of sugarcane bagasse into bio-crude oils by fluidized-bed pyrolysis technology. J Therm Sci Technol 5:11–23

    Article  CAS  Google Scholar 

  • Jahirul MI, Rasul MG, Chowdhury AA, Ashwath N (2012) Biofuels production through biomass pyrolysis-a technological review. Energies 5:4952–5001

    Article  CAS  Google Scholar 

  • Jiang X, Ellis N (2009) Upgrading bio-oil through emulsification with biodiesel: mixture production. Energy Fuel 24:1358–1364

    Article  CAS  Google Scholar 

  • Kersten SR, Wang X, Prins W, van Swaaij WP (2005) Biomass pyrolysis in a fluidized bed reactor. Part 1: literature review and model simulations. Ind Eng Chem Res 44:8773–8785

    Article  CAS  Google Scholar 

  • Lazzari E, Schena T, Primaz CT, da Silva Maciel GP, Machado ME, Cardoso CA, Jacques RA, Caramão EB (2016) Production and chromatographic characterization of bio-oil from the pyrolysis of mango seed waste. Ind Crop Prod 83:529–536

    Article  CAS  Google Scholar 

  • Lee MK, Tsai WT, Tsai YL, Lin SH (2010) Pyrolysis of Napier grass in an induction-heating reactor. J Anal Appl Pyrolysis 88:110–116

    Article  CAS  Google Scholar 

  • Lee Y, Ryu C, Park YK, Jung JH, Hyun S (2013) Characteristics of biochar produced from slow pyrolysis of Geodae-Uksae 1. Bioresour Technol 130:345–350

    Article  CAS  PubMed  Google Scholar 

  • Lehmann J (2007) Bio-energy in the black. Front Ecol Environ 5:381–387

    Article  Google Scholar 

  • Maity JP, Bundschuh J, Chen CY, Bhattacharya P (2014) Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: present and future perspectives-a mini review. Energy 78:104–113

    Article  CAS  Google Scholar 

  • Majhi A, Sharma YK, Naik DV, Chauhan R (2015) The production and evaluation of bio-oil obtained from the Jatropha curcas cake. Energy Sources Part A 37:1782–1789

    Article  CAS  Google Scholar 

  • Meier D, Faix O (1999) State of the art of applied fast pyrolysis of lignocellulosic materials-a review. Bioresour Technol 68:71–77

    Article  CAS  Google Scholar 

  • Mohamad AS, Chow M, Nor K (2009) Bio-oils from pyrolysis of oil palm empty fruit bunches. Am J Appl Sci 6:869–875

    Article  Google Scholar 

  • Mohammad I, Abakr Y, Kabir F, Yusuf S, Alshareef I, Chin S (2015) Pyrolysis of Napier grass in a fixed bed reactor: effect of operating conditions on product yields and characteristics. Bioresources 10:6457–6478

    Google Scholar 

  • Mohammed T, Lakhmiri R, Azmani A (2014) Bio-oil from pyrolysis of castor seeds. Int J Basic Appl Sci 14:217–226

    Google Scholar 

  • Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuel 20:848–889

    Article  CAS  Google Scholar 

  • Mohanty P, Pant KK, Naik SN, Parikh J, Hornung A, Sahu JN (2014) Synthesis of green fuels from biogenic waste through thermochemical route–the role of heterogeneous catalyst: a review. Renew Sust Energ Rev 38:131–153

    Article  CAS  Google Scholar 

  • Moralı U, Åžensöz S (2015) Pyrolysis of hornbeam shell (Carpinus betulus L.) in a fixed bed reactor: characterization of bio-oil and bio-char. Fuel 150:672–678

    Article  CAS  Google Scholar 

  • Moreira R, dos Reis Orsini R, Vaz JM, Penteado JC, Spinacé EV (2017) Production of biochar, bio-oil and synthesis gas from cashew nut shell by slow Pyrolysis. Waste Biomass Valor 8:217–224

    Article  CAS  Google Scholar 

  • Murugan S, Gu S (2015) Research and development activities in pyrolysis-contributions from Indian scientific community-a review. Renew Sust Energ Rev 46:282–295

    Article  Google Scholar 

  • Nayan NK, Kumar S, Singh RK (2012) Characterization of the liquid product obtained by pyrolysis of karanja seed. Bioresour Technol 124:186–189

    Article  CAS  PubMed  Google Scholar 

  • Nayan NK, Kumar S, Singh RK (2013) Production of the liquid fuel by thermal pyrolysis of neem seed. Fuel 103:437–443

    Article  CAS  Google Scholar 

  • Onay O (2007) Influence of pyrolysis temperature and heating rate on the production of bio-oil and char from safflower seed by pyrolysis, using a well-swept fixed-bed reactor. Fuel Process Technol 88:523–531

    Article  CAS  Google Scholar 

  • Onay O, Koçkar OM (2004) Fixed-bed pyrolysis of rapeseed (Brassica napus L.). Biomass Bioenergy 26:289–299

    Article  CAS  Google Scholar 

  • Onay O, Koçkar OM (2006) Pyrolysis of rapeseed in a free fall reactor for production of bio-oil. Fuel 85:1921–1928

    Article  CAS  Google Scholar 

  • Panwar NL, Kaushik SC, Kothari S (2011) Role of renewable energy sources in environmental protection: a review. Renew Sust Energ Rev 15:1513–1524

    Article  Google Scholar 

  • Park J, Lee Y, Ryu C, Park YK (2014) Slow pyrolysis of rice straw: analysis of products properties, carbon and energy yields. Bioresour Technol 155:63–70

    Article  CAS  PubMed  Google Scholar 

  • Patel M (2013) Pyrolysis and gasification of biomass and acid hydrolysis residues. Doctoral dissertation, Aston University.

    Google Scholar 

  • Pradhan D, Singh RK (2013) Bio-oil from biomass: thermal pyrolysis of mahua seed. In: Energy efficient technologies for Sustainability (ICEETS), 2013 International Conference on 2013 April 10, pp 487–490.

    Google Scholar 

  • Pradhan D, Singh RK, Bendu H, Mund R (2016) Pyrolysis of Mahua seed (Madhuca indica)-production of biofuel and its characterization. Energy Convers Manag 108:529–538

    Article  CAS  Google Scholar 

  • Pütün AE, Apaydin E, Pütün E (2002) Bio-oil production from pyrolysis and steam pyrolysis of soybean-cake: product yields and composition. Energy 27:703–713

    Article  Google Scholar 

  • Pütün AE, Uzun BB, Apaydin E, Pütün E (2005) Bio-oil from olive oil industry wastes: pyrolysis of olive residue under different conditions. Fuel Process Technol 87:25–32

    Article  CAS  Google Scholar 

  • Ramanathan S, Oyama ST (1995) New catalysts for hydroprocessing: transition metal carbides and nitrides. J Phys Chem 99:16365–16372

    Article  CAS  Google Scholar 

  • Razzak SA, Hossain MM, Lucky RA, Bassi AS, de Lasa H (2013) Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing-a review. Renew Sust Energ Rev 27:622–653

    Article  CAS  Google Scholar 

  • Rout T, Pradhan D, Singh RK, Kumari N (2016) Exhaustive study of products obtained from coconut shell pyrolysis. J Environ Chem Eng 4:3696–3705

    Article  CAS  Google Scholar 

  • Saikia R, Chutia RS, Kataki R, Pant KK (2015) Perennial grass (Arundo donax L.) as a feedstock for thermo-chemical conversion to energy and materials. Bioresour Technol 188:265–272

    Article  CAS  PubMed  Google Scholar 

  • Schroeder P, do Nascimento BP, Romeiro-ga, Figueiredo MK, da Cunha Veloso MC (2017) Chemical and physical analysis of the liquid fractions from soursop seed cake obtained using slow pyrolysis conditions. J Anal Appl Pyrolysis 124:161–174

    Article  CAS  Google Scholar 

  • Seal S, Panda AK, Kumar S, Singh RK (2015) Production and characterization of bio oil from cotton seed. Environ Prog Sustain Energy 34:542–547

    Article  CAS  Google Scholar 

  • Åžensöz S, Angın D (2008) Pyrolysis of safflower (Charthamus tinctorius L.) seed press cake: part 1. The effects of pyrolysis parameters on the product yields. Bioresour Technol 99:5492–5497

    Article  PubMed  CAS  Google Scholar 

  • Åžensöz S, Kaynar Ä° (2006) Bio-oil production from soybean (Glycine max L.); fuel properties of bio-oil. Ind Crop Prod 23:99–105

    Article  CAS  Google Scholar 

  • Åžensöz S, Demiral Ä°, Gerçel HF (2006) Olive bagasse (Olea europaea L.) pyrolysis. Bioresour Technol 97:429–436

    Article  PubMed  CAS  Google Scholar 

  • Shadangi KP, Mohanty K (2014) Production and characterization of pyrolytic oil by catalytic pyrolysis of Niger seed. Fuel 126:109–115

    Article  CAS  Google Scholar 

  • Sharma A, Pareek V, Zhang D (2015) Biomass pyrolysis-a review of modelling, process parameters and catalytic studies. Renew Sust Energ Rev 50:1081–1096

    Article  CAS  Google Scholar 

  • Sheu YH, Anthony RG, Soltes EJ (1998) Kinetic studies of upgrading pine pyrolytic oil by hydrotreatment. Fuel Process Technol 19:31–50

    Article  Google Scholar 

  • Singh RK, Shadangi KP (2011) Liquid fuel from castor seeds by pyrolysis. Fuel 90:2538–2544

    Article  CAS  Google Scholar 

  • Singh VK, Soni AB, Kumar S, Singh RK (2014) Pyrolysis of sal seed to liquid product. Bioresour Technol 151:432–435

    Article  CAS  PubMed  Google Scholar 

  • Sinha R, Kumar S, Singh RK (2013) Production of biofuel and biochar by thermal pyrolysis of linseed seed. Biomass Conv Bioref 3:327–335

    Article  CAS  Google Scholar 

  • Sundaram EG, Natarajan E (2009) Pyrolysis of coconut shell: an experimental investigation. J Eng Res 6:33–39

    Article  Google Scholar 

  • Tsai WT, Lee MK, Chang YM (2007) Fast pyrolysis of rice husk: product yields and compositions. Bioresour Technol 98:22–28

    Article  CAS  PubMed  Google Scholar 

  • Uçar S, Karagöz S (2009) The slow pyrolysis of pomegranate seeds: the effect of temperature on the product yields and bio-oil properties. J Anal Appl Pyrol 84:151–156

    Article  CAS  Google Scholar 

  • Ucar S, Ozkan AR (2008) Characterization of products from the pyrolysis of rapeseed oil cake. Bioresour Technol 99:8771–8776

    Article  CAS  PubMed  Google Scholar 

  • Uzun BB, Pütün AE, Pütün E (2006) Fast pyrolysis of soybean cake: product yields and compositions. Bioresour Technol 97:569–576

    Article  CAS  PubMed  Google Scholar 

  • Valliyappan T, Bakhshi NN, Dalai AK (2008) Pyrolysis of glycerol for the production of hydrogen or syn gas. Bioresour Technol 99:4476–4483

    Article  CAS  PubMed  Google Scholar 

  • Vamvuka D, Kakaras E, Kastanaki E, Grammelis P (2003) Pyrolysis characteristics and kinetics of biomass residuals mixtures with lignite. Fuel 82:1949–1960

    Article  CAS  Google Scholar 

  • Varma AK, Mondal P (2017) Pyrolysis of sugarcane bagasse in semi batch reactor: effects of process parameters on product yields and characterization of products. Ind Crop Prod 95:704–717

    Article  CAS  Google Scholar 

  • Volli V, Singh RK (2012) Production of bio-oil from de-oiled cakes by thermal pyrolysis. Fuel 96:579–585

    Article  CAS  Google Scholar 

  • Wang D, Czernik S, Chornet E (1998) Production of hydrogen from biomass by catalytic steam reforming of fast pyrolysis oils. Energy Fuel 12:19–24

    Article  Google Scholar 

  • Xiu S, Shahbazi A (2012) Bio-oil production and upgrading research: a review. Renew Sust Energ Rev 16:4406–4414

    Article  CAS  Google Scholar 

  • Xu C, Etcheverry T (2008) Hydro-liquefaction of woody biomass in sub-and super-critical ethanol with iron-based catalysts. Fuel 87:335–345

    Article  CAS  Google Scholar 

  • Yargicoglu EN, Sadasivam BY, Reddy KR, Spokas K (2015) Physical and chemical characterization of waste wood derived biochars. Waste Manag 36:256–268

    Article  CAS  PubMed  Google Scholar 

  • Yorgun S (2003) Fixed-bed pyrolysis of Miscanthus x giganteus: product yields and bio-oil characterization. Energy Sour 25:779–790

    Article  CAS  Google Scholar 

  • Yorgun S, Yıldız D (2015) Slow pyrolysis of paulownia wood: effects of pyrolysis parameters on product yields and bio-oil characterization. J Anal Appl Pyrolysis 114:68–78

    Article  CAS  Google Scholar 

  • Yorgun S, Åžensöz S, Koçkar ÖM (2001) Characterization of the pyrolysis oil produced in the slow pyrolysis of sunflower-extracted bagasse. Biomass Bioenergy 20:141–148

    Article  CAS  Google Scholar 

  • Zhang Q (2006) Upgrading bio-oil over solid acid and base by catalytic esterification. PhD thesis, University of Science and Technology of China

    Google Scholar 

  • Zhang Q, Chang J, Wang T, Xu Y (2007) Review of biomass pyrolysis oil properties and upgrading research. Energy Convers Manag 48:87–92

    Article  CAS  Google Scholar 

  • Zheng JL, Wei Q (2011) Improving the quality of fast pyrolysis bio-oil by reduced pressure distillation. Biomass Bioenergy 35:1804–1810

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasenjit Mondal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Varma, A.K., Shankar, R., Mondal, P. (2018). A Review on Pyrolysis of Biomass and the Impacts of Operating Conditions on Product Yield, Quality, and Upgradation. In: Sarangi, P., Nanda, S., Mohanty, P. (eds) Recent Advancements in Biofuels and Bioenergy Utilization. Springer, Singapore. https://doi.org/10.1007/978-981-13-1307-3_10

Download citation

Publish with us

Policies and ethics