Intelligent Adaptive Fuzzy Control

  • Kaushik Das SharmaEmail author
  • Amitava Chatterjee
  • Anjan Rakshit
Part of the Cognitive Intelligence and Robotics book series (CIR)


Automatic control theory, predominantly the concept of feedback, has played a fundamental role to the development of automation [1].


  1. 1.
    O. Mayr, The Origins of Feedback Control (MIT Press, Cambridge, 1970)zbMATHGoogle Scholar
  2. 2.
    C.-T. Chen, Control System Design, Orlando (SaundersCollege Publishing, Florida, 1993)Google Scholar
  3. 3.
    L.A. Zadeh, C.A. Desoer, Linear System Theory: A State Space Approach (McGraw-Hill Book Company, New York, 1963)zbMATHGoogle Scholar
  4. 4.
    K. Ogata, State Space Analysis of Control Systems, Englewood Cliffs (Prentice Hall, New Jersey, 1967)Google Scholar
  5. 5.
    R.R. Mohler, Nonlinear Systems: Dynamics and Control, vol. I (Prentice Hall, Englewood Cliffs, New Jersey, 1991)zbMATHGoogle Scholar
  6. 6.
    B. Friedland, Control System Design: An Introduction to State-Space Methods (McGraw-Hill, New York, 1986)zbMATHGoogle Scholar
  7. 7.
    G. Ellis, in Control System Design Guide: A Practical Guide, 3rd Ed. (Elsevier Academic Press, 2004)Google Scholar
  8. 8.
    E.J. Devison, On pole assignment in multivariable linear systems. IEEE Trans. Autom. Control, AC-13, 747–748 (Dec 1968)Google Scholar
  9. 9.
    W.M. Wonham, On pole assignment in multi-input controllable linear systems. IEEE Trans. Autom. Control, AC-12, 660–665 (Dec 1967)Google Scholar
  10. 10.
    A.G.J. MacFarlane, I. Postlethwaite, The generalized Nyquist Stability Criterion and Multivariable Root Loci. Int. J. Contr. 25, 81–127 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    J.R. Ragazzini, L.A. Zadeh, The Analysis of Sampled-Data Systems, Trans. AIEE, 71, part II, 225–234 (1952)Google Scholar
  12. 12.
    B.C. Kuo, Digital Control Systems, 2nd edn. (SaundersCollege Pub, Orlando, Florida, 1992)Google Scholar
  13. 13.
    K.J. Astrom, B. Wittenmark, Adaptive Control, Reading (Addison-Wesley Pub. Co., Massachusetts, 1989)Google Scholar
  14. 14.
    K.S. Narendra, R.V. Monopoli (eds.), Applications of Adaptive Control (Academic Press, New York, 1980)Google Scholar
  15. 15.
    K. Zhou, J.C. Doyle, K. Glover, Robust and Optimal Control (Prentice-Hall, New Jersey, 1996)zbMATHGoogle Scholar
  16. 16.
    B.A. Francis, in A Course in H-infinity Control Theory, Lecture notes in Control and Information Sciences, no. 88 (Springer-Verlag, Berlin, 1987)Google Scholar
  17. 17.
    V.I. Utkin, Variable structure systems with sliding modes, IEEE Trans. Autom. Control AC-22(2), 212–222 (Apr 1977)Google Scholar
  18. 18.
    V.I. Utkin, Sliding Modes in Control and Optimization (Springer-Verlag, Berlin, 1992)zbMATHCrossRefGoogle Scholar
  19. 19.
    S.H. Zak, Systems and Control (Oxford University Press, New York, 2003)Google Scholar
  20. 20.
    H. Kwakernaak, R. Sivan, Linear Optimal Control Systems (Wiley Interscience Pub, New York, 1972)zbMATHGoogle Scholar
  21. 21.
    H.M. Power, R.J. Simpson, Introduction to Dynamics and Control (McGraw-Hill, London, 1978)Google Scholar
  22. 22.
    S. Haykin, in Neural Networks: A Comprehensive Foundation, 2nd Ed. (Prentice-Hall, 1998)Google Scholar
  23. 23.
    M. Norgaard, O. Ravn, N.K. Poulsen, L.K. Hansen, Neural Network for Modelling and Control of Dynamic Systems (Springer-Verlag, London, 2000)zbMATHCrossRefGoogle Scholar
  24. 24.
    L.-X. Wang, Adaptive Fuzzy Systems and Control: Design and Stability Analysis, Englewood Cliffs (Prentice-Hall, NJ, 1994)Google Scholar
  25. 25.
    K.M. Passino, S. Yurkovich, in Fuzzy control, in Handbook on Control, ed. by W. Levine (CRC, Boca Raton, FL, 1996), pp. 1001–1017Google Scholar
  26. 26.
    D. Driankov, H. Hellendoorn, M.M. Reinfrank, An Introduction to Fuzzy Control (Germany, Springer-Verlag, Heidelberg, 1993)zbMATHCrossRefGoogle Scholar
  27. 27.
    N.J. Nilsson, in Artificial Intelligence: A New Synthesis (Morgan Kaufmann Pub., 1998)Google Scholar
  28. 28.
    B. Coppin, in Artificial Intelligence Illuminated (Jones and Bartlett Pub., 2004)Google Scholar
  29. 29.
    A. Konar, Computational Intelligence: Principles, Techniques and Applications (Springer-Verlag, Berlin, 2005)zbMATHCrossRefGoogle Scholar
  30. 30.
    A.P. Engelbrecht, in Fundamentals of Computational Swarm Intelligence (Wiley, 2006)Google Scholar
  31. 31.
    D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Kluwer Academic Publishers, Boston, 1989)zbMATHGoogle Scholar
  32. 32.
    L.A. Zadeh, Fuzzy sets. Informat. Contr. 8, 338–353 (1965)zbMATHCrossRefGoogle Scholar
  33. 33.
    L.A. Zadeh, Outline of a new approach to the analysis of a complex system and decision processes. IEEE Trans. Syst., Man, Cybern. 3, 28 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    E.H. Mamdani, Twenty years of fuzzy control: Experiences gained and lessons learnt, in Proceedings of the 2nd IEEE International Conference on Fuzzy System (San Francisco, USA, 1993), pp. 339–344Google Scholar
  35. 35.
    D. Chakroborty, K.D. Sharma, A study on the design methodologies of fuzzy logic controller, in Proceedings of 17th State Science & Technology Congress, WBUAFS (Kolkata, India, March 2010), pp. 69Google Scholar
  36. 36.
    M. Sugeno, An Introductory Survey of Fuzzy Control. Inf. Sci. 36, 59–83 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    E.H. Mamdani, S. Assilian, An experiment with in linguistic synthesis with a fuzzy logic controller. Int. J. Man-Machine Studies 7, 1–13 (1975)zbMATHCrossRefGoogle Scholar
  38. 38.
    T. Abdelazim, O.P. Malik, An adaptive power system stabilizer using on-line self-learning fuzzy systems, in Proceedings of IEEE Power Engineering Society General Meeting (Toronto, ON, Canada, 2003), pp. 1715–1720Google Scholar
  39. 39.
    A. Flores, D. Saez, J. Araya, M. Berenguel, A. Cipriano, Fuzzypredictive control of a solar power plant. IEEE Trans. Fuzzy Syst. 13(1), 58–68 (2005)CrossRefGoogle Scholar
  40. 40.
    T. Guesmi, H.H. Adballah, A. Toumi, Transient stability fuzzy control approach for power systems, in Proceedings of IEEE International Conference on Industrial Technology (Hammamet, Tunisia, 2004), pp. 1676–1681Google Scholar
  41. 41.
    Y.H. Aoul, A. Nafaa, D. Negru, A. Mehaoua, FAFC: Fast adaptive fuzzy AQM controller for TCP/IP networks, in Proceedings of IEEE Global Telecommunication Conference (Dallas, TX, 2004), pp. 1319–1323Google Scholar
  42. 42.
    B.S. Chen, C.L. Tsai, D.S. Chen, Robust H-infinity and mixed H2/ H-infinity filters for equalization designs of nonlinear communication systems: Fuzzy interpolation approach. IEEE Trans. Fuzzy Syst. 11(3), 384–398 (2003)CrossRefGoogle Scholar
  43. 43.
    B.S. Chen, Y.S. Yang, B.K. Lee, T.H. Lee, Fuzzy adaptive predictive flow control of ATM network traffic. IEEE Trans. Fuzzy Syst. 11(4), 568–581 (2003)CrossRefGoogle Scholar
  44. 44.
    A. Kandel, O. Manor, Y. Klein, S. Fluss, ATM-traffic management and congestion control using fuzzy logic. IEEE Trans. Syst., Man, Cybern. C, Appl. Rev. 29(3), 474–480 (1999)CrossRefGoogle Scholar
  45. 45.
    T.-H.S. Li, Y. Ying-Chieh, W. Jyun-Da, H. Ming-Ying, C. Chih-Yang, Multifunctional intelligent autonomous parking controllers for carlike mobile robots. IEEE Trans. Indust. Electron. 57(5), 1687–1700 (2010)CrossRefGoogle Scholar
  46. 46.
    R. Gutierrez-Osuna, J.A. Janet, R.C. Luo, Modeling of ultrasonic range sensors for localization of autonomous mobile robots. IEEE Trans. Indust. Electron. 45(4), 654–662 (1998)CrossRefGoogle Scholar
  47. 47.
    Z. Jinhui, X. Yuanqing, Design of static output feedback sliding mode control for uncertain linear systems. IEEE Trans. Indust. Electron. 57(6), 2161–2170 (2010)CrossRefGoogle Scholar
  48. 48.
    D Santosh, S. Achar, C.V, Jawahar, Autonomous image-based exploration for mobile robot navigation, in Proceedings of IEEE International Conference on Robotics Automation ICRA 2008, pp. 2717–2722Google Scholar
  49. 49.
    T. Das, I.N. Kar, Design and implementation of an adaptive fuzzy logic-based controller for wheeled mobile robots. IEEE Trans. Contr. Syst. Tech. 14(3), 501–510 (2006)CrossRefGoogle Scholar
  50. 50.
    U. Larsson, J. Forsberg, A. Wernersson, Mobile robot localization: integrating measurements from a time-of-flight laser. IEEE Trans. Indust. Electron. 43(3), 422–431 (1996)CrossRefGoogle Scholar
  51. 51.
    N.N. Singh, Vision Based Autonomous Navigation of Mobile Robots Ph.D. dissertation, Jadavpur University, 2010Google Scholar
  52. 52.
    S.Y. Hwang, J.B. Song, Monocular Vision-based SLAM in indoor environment using corner, lamp, and door features from upward-looking camera (IEEE Trans. Indust. Electron, Early Access, 2011)Google Scholar
  53. 53.
    P.P. Bonissone, Y.-T. Chen, K. Goebel, P.S. Khedkar, Hybrid soft computing systems: industrial and commercial applications. Proc. IEEE 87(9), 1641–1667 (1999)CrossRefGoogle Scholar
  54. 54.
    P.P. Bonissone, P.S. Khedkar, Y.-T. Chen, Genetic algorithms for automated tuning of fuzzy controllers: a transportation application, in Proceedings of 5th IEEE International Conference on Fuzzy System (New Orleans, USA, 1996), pp. 674–680Google Scholar
  55. 55.
    S.J. Huang, W.C. Lin, Adaptive fuzzy controller with sliding surface for vehicle suspension control. IEEE Trans. Fuzzy Syst. 11(4), 550–559 (2003)CrossRefGoogle Scholar
  56. 56.
    R.J.G.B. Campello, L.A.C. Meleiro, W.C. Amaral, Control of a bioprocess using orthonormal basis function fuzzy models, in Proceedings of IEEE International Conference on Fuzzy System (Budapest, Hungary, 2004), pp. 801–806Google Scholar
  57. 57.
    B. Chen, X. Liu, Fuzzy approximate disturbance decoupling of MIMO nonlinear systems by back stepping and application to chemical processes. IEEE Trans. Fuzzy Syst. 13(6), 832–847 (2005)CrossRefGoogle Scholar
  58. 58.
    C.W. Frey, H.B. Kuntze, A neuro-fuzzy supervisory control system for industrial batch processes. IEEE Trans. Fuzzy Syst. 9(4), 570–577 (2001)CrossRefGoogle Scholar
  59. 59.
    J.I. Horiuchi, M. Kishimoto, Application of fuzzy control to industrial bioprocesses in Japan. Fuzzy Sets Syst. 128(1), 117–124 (2002)MathSciNetCrossRefGoogle Scholar
  60. 60.
    H. Zheng, K.Y. Zhu, A fuzzy controller based multiple model adaptive control system for blood pressure control, in Proceedings of 8th Conference Control, Automation, Robotics and Vision (Kunming, China, 2004), pp. 1353–1358Google Scholar
  61. 61.
    H.F. Kwok, D.A. Linkens, M. Mahfouf, G.H. Mills, SIVA: a hybrid knowledge and model based advisory system for intensive care ventilators. IEEE Trans. Inform. Technol. Biomed. 8(2), 161–172 (2004)CrossRefGoogle Scholar
  62. 62.
    H. Seker, M.O. Odetayo, D. Petrovic, R.N.G. Naguib, A fuzzy logic based-method for prognostic decision making in breast and prostate cancers. IEEE Trans. Inform. Technol. Biomed. 7(2), 114–122 (2003)CrossRefGoogle Scholar
  63. 63.
    T. Haruki, K. Kikuchi, Video camera system using fuzzy logic. IEEE Trans. Consumer Electron. 38(3), 624–634 (1992)CrossRefGoogle Scholar
  64. 64.
    S. Kumar, A review of smart volume controllers for consumer electronics. IEEE Trans. Consumer Electron. 51(2), 600–605 (2005)CrossRefGoogle Scholar
  65. 65.
    S.H. Lee, Z. Bien, Design of expandable fuzzy inference processor. IEEE Trans. Consumer Electron. 40(2), 171–175 (1994)CrossRefGoogle Scholar
  66. 66.
    C.L. Chen, G. Feng, D. Sun, Y. Zhu, H-infinity output feedback control of discrete-time fuzzy systems with application to chaos control. IEEE Trans. Fuzzy Syst. 13(4), 531–543 (2005)CrossRefGoogle Scholar
  67. 67.
    K.Y. Lian, C.S. Chiu, T.S. Chiang, P. Liu, LMI-based fuzzy chaotic synchronization and communications. IEEE Trans. Fuzzy Syst. 9(4), 539–553 (2001)CrossRefGoogle Scholar
  68. 68.
    M. Boroushaki, M.B. Ghofrani, C. Lucas, M.J. Yazdanpanah, Identification and control of a nuclear reactor core (VVER) using recurrent neural networks and fuzzy systems. IEEE Trans. Nucl. Sci. 50(1), 159–174 (2003)CrossRefGoogle Scholar
  69. 69.
    S.R. Munasinghe, M.S. Kim, J.J. Lee, Adaptive neuro fuzzy controller to regulate UTSG water level in nuclear power plants. IEEE Trans. Nucl. Sci. 52(1), 421–429 (2005)CrossRefGoogle Scholar
  70. 70.
    G. Feng, A survey on analysis and design of model-based fuzzy control systems. IEEE Trans. Fuzzy Syst. 14(5), 676–697 (2006)CrossRefGoogle Scholar
  71. 71.
    B.G. Hu, G.K.I. Mann, R.G. Gosine, A systematic study of fuzzy PID controllers—Function based evaluation approach. IEEE Trans. Fuzzy Syst. 9(5), 699–712 (2001)CrossRefGoogle Scholar
  72. 72.
    S.Z. He, S. Tan, F.L. Xu, P.Z. Wang, Fuzzy self-tuning of PID controllers. Fuzzy Sets Syst. 56, 37–46 (1993)MathSciNetCrossRefGoogle Scholar
  73. 73.
    Z.Y. Zhao, M. Tomizuka, S. Isaka, Fuzzy gain-scheduling of PID controllers. IEEE Trans. Syst., Man, Cybern. 23(5), 1392–1398 (1993)CrossRefGoogle Scholar
  74. 74.
    J.S.R. Jang, ANFIS: adaptive network-based fuzzy inference system. IEEE Trans. Syst., Man, Cybern. 23, 665–685 (1993)CrossRefGoogle Scholar
  75. 75.
    J. Zhang, Modeling and optimal control of batch processes using recurrent neuro-fuzzy networks. IEEE Trans. Fuzzy Syst. 13(4), 417–426 (2005)CrossRefGoogle Scholar
  76. 76.
    R. Palm, Sliding mode fuzzy control, in Proceedings of IEEE International Conference on Fuzzy System (San Diego, CA, March 1992), pp. 519–526Google Scholar
  77. 77.
    P.-Y. Huang, S.-C. Lin, Y.-Y. Chen, Real-coded genetic algorithm based fuzzy sliding-mode control design for precision positioning, in Proceedings of IEEE World Congress on Computational Intelligence (Anchorage, AK, USA, 1998), pp. 1247–1252Google Scholar
  78. 78.
    T. Orlowska-Kowalska, M. Dybkowski, K. Szabat, Adaptive sliding-mode neuro-fuzzy control of the two-mass induction motor drive without mechanical sensors. IEEE Trans. Indust. Electron. 57(2), 553–564 (2010)CrossRefGoogle Scholar
  79. 79.
    H.J. Lee, J.B. Park, G. Chen, Robust fuzzy control of nonlinear systems with parametric uncertainties. IEEE Trans. Fuzzy Syst. 9(2), 369–379 (2001)CrossRefGoogle Scholar
  80. 80.
    H. Han, C.-Y. Su, Robust fuzzy control of nonlinear systems using shape-adaptive radial basis functions, Fuzzy Sets & Syst. 125, 23–28 (2002)Google Scholar
  81. 81.
    N. Sadati, A. Talasaz, A robust fuzzy sliding mode control for uncertain dynamic systems, in Proceedings of IEEE International Conference on System, Man Cybernetics, Oct 2004, pp. 2225–2230Google Scholar
  82. 82.
    R. Palm, Sliding mode fuzzy control, in Proceedings of IEEE International Conference on Fuzzy System (1992), pp. 519–526Google Scholar
  83. 83.
    S. Isaka, A. Sebald, A. Karimi, N. Smith, M. Quinn, On the design and performance evaluation of adaptive fuzzy controllers, in Proceedings of IEEE Conference on Decision and Control (Austin, TX, Dec 1988), pp. 1068–1069Google Scholar
  84. 84.
    L.-X. Wang, Stable adaptive fuzzy control of nonlinear systems, in Proceedings of 31st Conference on Decision Control (Tucson, AZ, 1992), pp. 2511–2516Google Scholar
  85. 85.
    Y.P. Glorennec, Adaptive fuzzy control, in Proceedings of 4th IFSA Congress (Brussels, 1991), vol. Eng., pp. 33–36Google Scholar
  86. 86.
    C.-Y. Su, Y. Stepanenko, Adaptive control of a class of nonlinear systems with fuzzy logic. IEEE Trans. Fuzzy Syst. 2, 285–294 (1994)CrossRefGoogle Scholar
  87. 87.
    L.X. Wang, Stable adaptive fuzzy control of nonlinear system, IEEE Trans. Fuzzy Syst. 1(2), 146–155 (May 1993)Google Scholar
  88. 88.
    K. Fischle, D. Schroder, An improved stable adaptive fuzzy control method. IEEE Trans. Fuzzy Syst. 7(1), 27–40 (1999)CrossRefGoogle Scholar
  89. 89.
    B.S. Chen, C.H. Lee, Y.C. Chang, H-infinity tracking design of uncertain nonlinear SISO systems: adaptive fuzzy approach. IEEE Trans. Fuzzy Syst. 4(1), 32–43 (1996)CrossRefGoogle Scholar
  90. 90.
    D.L. Tsay, H.Y. Chung, C.J. Lee, The adaptive control of nonlinear systems using the Sugeno-type of fuzzy logic. IEEE Trans. Fuzzy Syst. 7(2), 225–229 (1999)CrossRefGoogle Scholar
  91. 91.
    T. Wang, S. Tong, Adaptive fuzzy output feedback control for SISO nonlinear systems. Int. J. Innovative Comput. Info Control 2(1), 51–60 (2006)Google Scholar
  92. 92.
    K.D. Sharma, A. Chatterjee, F. Matsuno, A Lyapunov theory and stochastic optimization based stable adaptive fuzzy control methodology, in Proceedings of SICE Annual Conference 2008, Japan, pp. 1839–1844, August 20–22Google Scholar
  93. 93.
    K. Das Sharma, A. Chatterjee, A. Rakshit, A hybrid approach for design of stable adaptive fuzzy controllers employing Lyapunov theory and particle swarm optimization. IEEE Trans. Fuzzy Syst. 17(2), 329–342 (2009)CrossRefGoogle Scholar
  94. 94.
    R. Ordonez, J. Zumberge, J.T. Spooner, K.M. Passino, Adaptive fuzzy control: experiments and comparative analyses. IEEE Trans. Fuzzy Syst. 5(2), 167–188 (1997)CrossRefGoogle Scholar
  95. 95.
    L.-X. Wang, in A course in fuzzy systems and control (Englewood Cliffs, Prentice Hall, NJ, 1997)Google Scholar
  96. 96.
    T. Procyk, E. Mamdani, A linguistic self-organizing process controller. Automatica 15(1), 15–30 (1979)zbMATHCrossRefGoogle Scholar
  97. 97.
    J.R. Layne, K.M. Passino, Fuzzy model reference learning control. J. Intell. Fuzzy Syst. 4(1), 33–47 (1996)Google Scholar
  98. 98.
    J.R. Layne, K.M. Passino, Fuzzy model reference learning control, in Proceedings of 1st IEEE Conference on Control Applications (Dayton, OH, Sept 1992), pp. 686–691Google Scholar
  99. 99.
    J.R. Layne, K.M. Passino, Fuzzy model reference learning control for cargo ship steering. IEEE Contr. Syst. Mag. 13, 23–34 (1993)CrossRefGoogle Scholar
  100. 100.
    J. Layne, K. Passino, S. Yurkovich, Fuzzy learning control for antiskid braking systems, in Proceedings of IEEE Conference on Decision Control (Tucson, AZ, Dec 1992), pp. 2523–2528Google Scholar
  101. 101.
    W.A. Kwong, K.M. Passino, Dynamically focused fuzzy learning control. IEEE Trans. Syst., Man, Cybern. 26, 53–74 (1996)CrossRefGoogle Scholar
  102. 102.
    W. Lennon, K. Passino, Intelligent control for brake systems, in Proceedings of IEEE International Symposium on Intelligent Control (Monterey, CA, Aug 1995), pp. 499–504Google Scholar
  103. 103.
    J. Zumberge, K.M. Passino, A case study in intelligent control for a process control experiment, in Proceedings of IEEE International Symposium on Intelligent Control (Dearborn, MI, Sept 1996)Google Scholar
  104. 104.
    V.G. Moudgal, W.A. Kwong, K.M. Passino, S. Yurkovich, Fuzzy learning control for a flexible-link robot. IEEE Trans. Fuzzy Syst. 3, 199–210 (1995)CrossRefGoogle Scholar
  105. 105.
    S. Shao, Fuzzy self-organizing controller and its application for dynamic processes. Fuzzy Sets Syst. 26, 151–164 (1988)MathSciNetCrossRefGoogle Scholar
  106. 106.
    R. Tanscheit, E. Scharf, Experiments with the use of a rule-based self-organizing controller for robotics applications. Fuzzy Sets Syst. 26, 195–214 (1988)CrossRefGoogle Scholar
  107. 107.
    T. Yamazaki, An improved algorithm for a self-organizing controller and its experimental analysis, Ph.D. Thesis, London University, 1982Google Scholar
  108. 108.
    T.A. Johansen, Fuzzy model based control: stability, robustness, and performance issues. IEEE Trans. Fuzzy Syst. 2, 221–234 (1994)CrossRefGoogle Scholar
  109. 109.
    R. Chekkouri, L. Romeral, M. Moreno, Direct adaptive fuzzy controller by changing the output membership functions for nonlinear motion applications, IEEE ICIT 2003-Maribor, (Slovenia, 2000), pp. 22–26Google Scholar
  110. 110.
    K. Tanaka, Design of model-based fuzzy controller using Lyapunov’s stability approach and its application to trajectory stabilization of a model car, in Theoretical Aspects of Fuzzy Control, ed. by H.T. Nguyen, M. Sugeno, R. Tong, R.R. Yager (Wiley, New York, 1995), pp. 31–50Google Scholar
  111. 111.
    S.S. Chen, J.L. Wu, S.F. Su, J.C. Chang, Y.C. Chang, T.T. Lee, On the analysis of direct adaptive fuzzy controllers, in Proceedings of 3rd International Conference on Machine Learning. Cybernetics (Shanghai, 2004), pp. 4368–4373Google Scholar
  112. 112.
    H.-X. Li, S. Tong, A hybrid adaptive fuzzy control for a class of nonlinear MIMO system. IEEE Trans. Fuzzy Syst. 11(1), 24–34 (2003)CrossRefGoogle Scholar
  113. 113.
    R.E. Kalman, J.E. Bertram, Control System Analysis and Design via the ‘Second Method’ of Lyapunov. I. Continuous-time Systems, Trans. ASME J. Basic Eng., pp. 371–393, June 1960Google Scholar
  114. 114.
    S. Chand, S. Hansen, Energy based stability analysis of a fuzzy roll controller design for a flexible aircraft wing, in Proceedings of IEEE Conference on Decision and Control (Tampa, FL, Dec 1989), pp. 705–709Google Scholar
  115. 115.
    S. Chiu, S. Chand, Fuzzy controller design and stability analysis for an aircraft model, in Proceedings of the American Control Conference (Boston, June 1991), pp. 821–826Google Scholar
  116. 116.
    G. Langari, A Framework for Analysis and Synthesis of Fuzzy Linguistic Control Systems, Ph.D. thesis, University of California, Berkeley, 1990Google Scholar
  117. 117.
    G. Langari, M. Tomizuka, Stability of fuzzy linguistic control systems, in Proceedings of IEEE Conference on Decision and Control (Honolulu, HI, Dec 1990), pp. 2185–2190Google Scholar
  118. 118.
    K. Narendra, J. Taylor, Frequency Domain Criteria for Absolute Stability (Academic Press, New York, 1973)zbMATHGoogle Scholar
  119. 119.
    J. Aracil, A. Ollero, A. Garcia-Cerezo, Stability indices for the global analysis of expert control systems, IEEE Trans. Syst., Man, Cybern. 19(5), 998–1007 (Sep/Oct 1989)Google Scholar
  120. 120.
    S.S. Farinwata, G. Vachtsevanos, Stability analysis of the fuzzy controller designed by the phase portrait assignment algorithm, in Proceedings of 2nd IEEE International Conference on Fuzzy Systems (San Francisco, CA, Mar 1993), pp. 1377–1382Google Scholar
  121. 121.
    C.J. Harris, C.G. Moore, Phase plane analysis tools for a class of fuzzy control systems, in Proceedings of IEEE International Conference on Fuzzy Systems (San Diego, CA, Mar 1992), pp. 511–518Google Scholar
  122. 122.
    K.S. Ray, A.M. Ghosh, D.D. Majumder, L2-stability and the related design concept for SISO linear systems associated with fuzzy logic controllers, IEEE Trans. Syst., Man, Cybern. 14(6), 932–939 (Nov/Dec 1984)Google Scholar
  123. 123.
    K.S. Ray, D.D. Majumder, Application of circle criteria for stability analysis of linear SISO and MIMO systems associated with fuzzy logic controllers, IEEE Trans. Syst., Man, Cybern. 14(2), 345–349 (Mar/Apr 1984)Google Scholar
  124. 124.
    R. Palm, D. Driankov, H. Hellendoorn, Model Based Fuzzy Control (Springer-Verlag, New York, 1997)zbMATHCrossRefGoogle Scholar
  125. 125.
    T. Takagi, M. Sugeno, Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst., Man, Cybern. 15(1), 116–132 (1985)zbMATHCrossRefGoogle Scholar
  126. 126.
    K. Tanaka, T. Ikeda, H.O. Wang, Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: Quadratic stabilizability, H-infinity control theory, and linear matrix inequalities. IEEE Trans. Fuzzy Syst. 4(1), 1–13 (1996)CrossRefGoogle Scholar
  127. 127.
    K. Tanaka, M. Sano, Concept of stability margin for fuzzy systems and design of robust fuzzy controllers, in Proceedings of IEEE International Conference on Fuzzy Systems (San Francisco, CA, Mar 1993), pp. 29–34Google Scholar
  128. 128.
    K. Tanaka, M. Sugeno, Stability analysis and design of fuzzy control systems. Fuzzy Sets Syst. 45, 135–156 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  129. 129.
    K. Tanaka, M. Sano, A robust stabilization problem of fuzzy control systems and its application to backing up control of a truck-trailer. IEEE Trans. Fuzzy Syst. 2(2), 119–134 (1994)CrossRefGoogle Scholar
  130. 130.
    H.O. Wang, K. Tanaka, An LMI-based stable fuzzy control of nonlinear systems and its application to the control of chaos, in Proceedings of IEEE International Conference on Fuzzy Systems (New Orleans, LA, Sept, 1996), pp. 1433–1439Google Scholar
  131. 131.
    H.K. Khalil, Nonlinear Systems, 2nd edn. (Prentice-Hall, Englewood Cliffs, NJ, 1996)Google Scholar
  132. 132.
    D.F. Jenkins, Nonlinear analysis of fuzzy control systems, Master’s Thesis, Department of Electrical Engineering, The Ohio State University, 1993Google Scholar
  133. 133.
    D.P. Atherton, Nonlinear Control Engineering: Describing Function Analysis and Design (Berkshire, England, 1982)Google Scholar
  134. 134.
    D. Jenkins, K.M. Passino, An introduction to nonlinear analysis of fuzzy control systems. J. Intell. Fuzzy Systems 7(1), 75–103 (1999)Google Scholar
  135. 135.
    D.P. Atherton, A describing function approach for the evaluation of fuzzy logic control, in Proceedings of American Control Conference (San Francisco, CA, June 1993), pp. 765–766Google Scholar
  136. 136.
    W.J.M. Kickert, E.H. Mamdani, Analysis of a fuzzy logic controller. Fuzzy Sets Syst. 1, 29–44 (1978)zbMATHCrossRefGoogle Scholar
  137. 137.
    H.O. Wang, K. Tanaka, M.F. Griffin, An approach to fuzzy control of nonlinear systems: stability and design issues. IEEE Trans. Fuzzy Syst. 4(1), 14–23 (1996)CrossRefGoogle Scholar
  138. 138.
    Y.-Y. Chen, The Global Analysis of Fuzzy Dynamical Systems, Ph.D. thesis, University of California, Berkeley, 1989Google Scholar
  139. 139.
    Y.Y. Chen, T.C. Tsao, A description of the dynamical behavior of fuzzy systems, IEEE Trans. Syst., Man, Cybern. 19(4), 745–755 (Jul/Aug 1989)Google Scholar
  140. 140.
    J. Fei, C. Isik, The analysis of fuzzy knowledge-based systems using cell-to-cell mapping, in Proceedings of IEEE International Symposium on Intelligent Control (Philadelphia, Sept 1990), pp. 633–637Google Scholar
  141. 141.
    C.S. Hsu, A theory of cell-to-cell mapping dynamical systems. Trans. ASME, J. Applied Mech. 47, 931–939 (Dec 1980)Google Scholar
  142. 142.
    C.S. Hsu, R.S. Guttalu, An unraveling algorithm for global analysis of dynamical systems: an application of cell-to-cell mapping. Trans. ASME, J. Applied Mech. 47, 940–948 (Dec 1980)Google Scholar
  143. 143.
    G. Feng, Stability analysis of discrete time fuzzy dynamic systems based on piecewise Lyapunov functions. IEEE Trans. Fuzzy Syst. 12(1), 22–28 (2004)MathSciNetCrossRefGoogle Scholar
  144. 144.
    M. Johansson, A. Rantzer, K.E. Arzen, Piecewise quadratic stability of fuzzy systems. IEEE Trans. Fuzzy Syst. 7(6), 713–722 (1999)CrossRefGoogle Scholar
  145. 145.
    S.G. Cao, N.W. Rees, G. Feng, Stability analysis and design for a class of continuous-time fuzzy control systems. Int. J. Contr. 64, 1069–1087 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  146. 146.
    S.G. Cao, N.W. Rees, G. Feng, H-infinity control of nonlinear continuous-time systems based on dynamic fuzzy models. Int. J. Syst. Sci. 27, 821–830 (1996)zbMATHCrossRefGoogle Scholar
  147. 147.
    S.G. Cao, N.W. Rees, G. Feng, Analysis and design for a class of complex control systems-Part I: fuzzy modeling and identification. Automatica 33, 1017–1028 (1997)zbMATHCrossRefGoogle Scholar
  148. 148.
    D.J. Choi, P.G. Park, H-infinity state-feedback controller design for discrete-time fuzzy systems using fuzzy weighting-dependent Lyapunov functions. IEEE Trans. Fuzzy Syst. 11(2), 271–278 (2003)CrossRefGoogle Scholar
  149. 149.
    T.M. Guerra, L. Vermeiren, LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi–Sugeno’s form. Automatica 40(5), 823–829 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  150. 150.
    K. Tanaka, T. Hori, H.O. Wang, A multiple Lyapunov function approach to stabilization of fuzzy control systems. IEEE Trans. Fuzzy Syst. 11(4), 582–589 (2003)CrossRefGoogle Scholar
  151. 151.
    J.W. Curtis, R.W. Beard, A graphical understanding of Lyapunov based nonlinear control, in Proceedings of 41st IEEE Conference on Decision and Control (Las Vegas, Nevada USA, Dec 2002)Google Scholar
  152. 152.
    W. Assawinchaichote, S.K. Nguang, Fuzzy H output feedback control design for singularly perturbed systems: an LMI approach, in Proceedings of 42nd IEEE Conference on Decision and Control (Hawaii, USA, December 2003), pp. 863–868Google Scholar
  153. 153.
    X. Zhengrogn, C. Qingwei, H. Weili, Robust H control for fuzzy descriptor systems with state delay. IEEE J. Syst. Eng. Electron. 16(1), 98–101 (2005)Google Scholar
  154. 154.
    S.K. Nguang, W. Assawinchaichote, P. Shi, Y. Shi, Robust H control design for uncertain fuzzy systems with Markovian jumps: an LMI approach, in Proceedings of American Control Conference (Portland USA, June 2005), pp. 1805–1810Google Scholar
  155. 155.
    T. Agustinah, A. Jazidie, Md Nuh, Fuzzy tracking control based on H performance for nonlinear systems. WSEAS Trans. Syst. Control 6(11), 393–403 (2011)Google Scholar
  156. 156.
    S.-M. Wu, C.-C. Sun, H.-Y. Chung, W.-J. Chang, Mixed H2/H region-based fuzzy controller design for continuous-time fuzzy systems. J. Intelligent Fuzzy Syst. 18, 19–30 (2007)zbMATHGoogle Scholar
  157. 157.
    H.-N. Wu, H.-X Li, H fuzzy observer-based control for a class of nonlinear distributed parameter systems with control constraints, IEEE Trans. Fuzzy Syst. 16(2), 502–516 (April 2008)Google Scholar
  158. 158.
    Y. Guan, S. Zhou, W.X. Zheng, H dynamic output feedback control for fuzzy systems with quantized measurements, in Proceedings of Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference (Shanghai, P.R. China, Dec 2009), pp. 7765–7770Google Scholar
  159. 159.
    J. Pan, S. Fei, Y. Ni, M. Xue, New approaches to relaxed stabilization conditions and H control designs for T-S fuzzy systems. J Control Theory Appl. 10(1), 82–91 (2012)MathSciNetCrossRefGoogle Scholar
  160. 160.
    H. Yishao, Z. Dequn, C. Xiaoxui, D. Lin, H tracking design for a class of decentralized nonlinear systems via fuzzy adaptive observer. IEEE J. Syst. Eng. Electron. 20(4), 790–799 (2009)Google Scholar
  161. 161.
    W. Miaoxin, L. Jizhen, L. Xianqjie, L. Juncheng, Robust H controller design for a class of nonlinear fuzzy time-delay systems. IEEE J. Syst. Eng. Electron. 20(6), 1286–1289 (2009)Google Scholar
  162. 162.
    B.-S. Chen, Y.-P. Lin, Y.-J. Chuang, Robust H observer-based tracking control of stochastic immune systems under environmental disturbances and measurement noises. Asian J. Control 13(5), 667–690 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  163. 163.
    G. Chao, L. Xiao-Geng, W. Jun-Wei, W. Fei, Robust H decentralized fuzzy tracking control for bank-to-turn missiles, in Proceedings of 32nd Chinese Control Conference, July 26–28, 2013, China, pp. 3498–3503Google Scholar
  164. 164.
    S. Park, H. Ahn, Robust T-S fuzzy H control of interior permanent magnet motor using weighted integral action, in Proceedings of 2014 14th International Conference on Control, Automation and Systems (ICCAS 2014), Oct. 22–25, 2014, Korea, pp. 1504–1507Google Scholar
  165. 165.
    K.D. Sharma, A. Chatterjee, P. Siarry, A. Rakshit, CMA—H hybrid design of robust stable adaptive fuzzy controllers for non-linear systems, in Proceedings of 1st International Conference on Frontiers in Optimization: Theory and Applications (FOTA-2016), November 2016, IndiaGoogle Scholar
  166. 166.
    J. Xiong, X.-H. Chang, Observer-based robust non-fragile H control for uncertain T-S fuzzy singular systems, in Proceedings 36th Chinese Control Conference, July 26–28, 2017, China, pp. 4233–4238Google Scholar
  167. 167.
    S. Sumathi, P. Surekha, Computational Intelligence Paradigms (CRC Press, 2010)Google Scholar
  168. 168.
    J.-S.R. Jang, C.-T. Sun, E. Mizutani, Neuro-Fuzzy and Soft Computing (Prentice-Hall, Englewood Cliffs, NJ, 1997)Google Scholar
  169. 169.
    C. Karr, Genetic algorithms for fuzzy controllers, AI Expert, pp. 26–33, Feb. 1991Google Scholar
  170. 170.
    M. Valenzuela-Rendon, The fuzzy classifier system: a classifier system for continuously varying variables, in Proceedings of 4th International Conference Genetic Algo., 1991, pp 346–353Google Scholar
  171. 171.
    M. Valenzuela-Rendon, Reinforcement learning in the fuzzy classifier system. Expert Syst. Appl. 14, 237–247 (1998)CrossRefGoogle Scholar
  172. 172.
    P. Thrift, Fuzzy logic synthesis with genetic algorithms, in Proceedings 4th International Conference on Genetic Algo., 1991, pp 509–513Google Scholar
  173. 173.
    D.T. Pham, D. Karaboga, Optimum design of fuzzy logic controllers using genetic algorithms. J. Syst. Eng. 1, 114–118 (1991)Google Scholar
  174. 174.
    H.-S. Hwang, Control strategy for optimal compromise between trip time and energy consumption in a high-speed railway. IEEE Trans. Syst., Man, Cybern. 28(6), 791–802 (1998)CrossRefGoogle Scholar
  175. 175.
    M. Shim, S. Seong, B. Ko, M. So, Application of evolutionary computation at LG electronics, in Proceedings of IEEE International Conference Fuzzy Systems, Seoul, South Korea, 1999, pp. 1802–1806Google Scholar
  176. 176.
    R. Alcala, J.M. Benittez, J. Casillas, O. Cordon, R. Perez, Fuzzy control of HVAC systems optimised by genetic algorithms. Appl Intelligence 18, 155–177 (2003)zbMATHCrossRefGoogle Scholar
  177. 177.
    A. Homaifar, E. McCormick, Simultaneous design of membership functions and rule sets for fuzzy controllers using genetic algorithms. IEEE Trans. Fuzzy Syst. 3(2), 129–139 (1995)CrossRefGoogle Scholar
  178. 178.
    H. Ishibuchi, K. Nozaki, N. Yamamoto, H. Tanaka, Selection fuzzy IF-THEN rules for classification problems using genetic algorithms. IEEE Trans. Fuzzy Syst. 3(3), 260–270 (1995)CrossRefGoogle Scholar
  179. 179.
    M. Setnes, H. Roubos, GA-fuzzy modeling and classification: complexity and performance. IEEE Trans. Fuzzy Syst. 8(5), 509–522 (2000)CrossRefGoogle Scholar
  180. 180.
    D. Park, A. Kandel, G. Langholz, Genetic-based new fuzzy reasoning models with applications to fuzzy control. IEEE Trans. Syst., Man, Cybern. 24(1), 39–47 (1994)CrossRefGoogle Scholar
  181. 181.
    F. Herrera, M. Lozano, J.L. Verdegay, Tuning Fuzzy Logic Controllers by Genetic Algorithms. Int. J. Approx. Reasoning 12, 299–315 (1995)Google Scholar
  182. 182.
    K. Kropp, U.G. Baitinger, Optimization of fuzzy logic controller inference rules using a genetic algorithm, in Proceedings 1st European Congress Fuzzy and Intelligent Technology, Aachen, 1993, pp. 1090–1096Google Scholar
  183. 183.
    T. Hessburg, M. Lee, H. Takagi, M. Tomizuka, Automatic design of fuzzy systems using genetic algorithms and its application to lateral vehicle guidance, SPIE’s Int. Symp. Optical Tools Manufac. and Adv. Automation, vol. 2061, Boston, 1993Google Scholar
  184. 184.
    A. Varsek, T. Urbancic, B. Filipic, Genetic algorithms in controller design and tuning, IEEE Trans. Syst., Man, Cybern. 23, 1330–1339 (1993)Google Scholar
  185. 185.
    S. Voget, M. Kolonko, Multidimensional optimization with a fuzzy genetic algorithm. J. Heuristics 4(3), 221–244 (1998)zbMATHCrossRefGoogle Scholar
  186. 186.
    F. Herrera, M. Lozano, Adaptation of genetic algorithm parameters based on fuzzy logic controllers, in Genetic Algo. and Soft Comp., Physica-Verlag, Wurzburg, pp. 95–125, 1996Google Scholar
  187. 187.
    I.G. Damousis, P. Dokopoulos, A fuzzy expert system for the forecasting of wind speed and power generation in wind farms, in Proceedings of International Conference on Power Industry Computer Application, 2001 (Sydney, Australia, 2001) pp. 63–69Google Scholar
  188. 188.
    F. Cupertino, E. Mininno, D. Naso, B. Turchiano, L. Salvatore, On-line genetic design of anti-windup unstructured controllers for electric drives with variable load. IEEE Trans. Evol. Comput. 8(4), 347–364 (2004)CrossRefGoogle Scholar
  189. 189.
    C.L. Chiang, C.T. Sub, Tracking control of induction motor using fuzzy phase plane controller with improved genetic algorithm. Elect. Power Syst. Res., Elsevier, 73, 239–247 (2005)Google Scholar
  190. 190.
    V. Giordano, D. Naso, B. Turchiano, Combining genetic algorithm and Lyapunov-based adaptation for online design of fuzzy controllers, IEEE Trans. Syst., Man, Cybern. B Cybern. 36(5), 1118–1127 (Oct 2006)Google Scholar
  191. 191.
    K.D. Sharma, Hybrid methodologies for stable adaptive fuzzy control, Doctoral Dissertation, Jadavpur University, India, 2012Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Kaushik Das Sharma
    • 1
    Email author
  • Amitava Chatterjee
    • 2
  • Anjan Rakshit
    • 2
  1. 1.Department of Applied PhysicsUniversity of CalcuttaKolkataIndia
  2. 2.Department of Electrical EngineeringJadavpur UniversityKolkataIndia

Personalised recommendations