Skip to main content

Air–Water CO2 Flux in Shallow Coastal Waters: Theory, Methods, and Empirical Studies

  • Chapter
  • First Online:
Blue Carbon in Shallow Coastal Ecosystems

Abstract

The fact that the ocean is one of the largest sinks of atmospheric CO2 on Earth is an important consideration in the prediction of future climate changes and identification of possible mitigation strategies for global climate change. Recently, carbon storage in vegetated coastal habitats (blue carbon ecosystems) has been explored as a new option to mitigate climate change. However, the complexity of the mechanisms that control air–water CO2 fluxes in shallow coastal ecosystems has precluded their adequate quantification. Spatiotemporal extension of accurate values of these fluxes will be an important milestone for assessing the contribution of blue carbon ecosystems to mitigation of climate change. In this chapter, we explain the theoretical understanding of air–water CO2 fluxes and methods for their measurement. We then discuss results of empirical measurements of air–water CO2 fluxes in shallow coastal waters. We conclude that statistical analyses of augmented air–coastal-water CO2 flux data based on long-term measurements and multiple methods should lead to a quantitative understanding of the current status and future air–water CO2 fluxes in shallow coastal waters at national and global scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhand A, Chanda A, Manna S et al (2016) A comparison of CO2 dynamics and air-water fluxes in a river-dominated estuary and a mangrove-dominated marine estuary. Geophys Res Lett 43:726–735

    Article  Google Scholar 

  • Akhand A, Chanda A, Das S, Hazra S, Kuwae T (2018) CO2 fluxes in mangrove ecosystems. In: Kuwae T, Hori M (eds) Blue carbon in shallow coastal ecosystems: carbon dynamics, policy, and implementation. Springer, Singapore, pp 185–221

    Google Scholar 

  • Baldocchi D (2008) ‘Breathing’ of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Aust J Bot 56:1–26. https://doi.org/10.1071/BT07151

    Article  CAS  Google Scholar 

  • Baldocchi D (2014) Measuring fluxes of trace gases and energy between ecosystems and the atmosphere—the state and future of the eddy covariance method. Glob Chang Biol 20:3600–3609

    Article  Google Scholar 

  • Berg P, Røy H, Janssen F et al (2003) Oxygen uptake by aquatic sediments measured with a novel non-invasive eddy-correlation technique. Mar Ecol Prog Ser 261:75–83

    Article  Google Scholar 

  • Borges AV, Djenidi S, Lacroix G et al (2003) Atmospheric CO2 flux from mangrove surrounding waters. Geophys Res Lett 30:1558. https://doi.org/10.1029/2003GL017143

    Article  CAS  Google Scholar 

  • Businger JA, Oncley SP (1990) Flux measurement with conditional sampling. J Atmos Ocean Technol 7:349–335

    Article  Google Scholar 

  • Cai WJ (2011) Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration? Annu Rev Mar Sci 3:123–145

    Article  Google Scholar 

  • Ciais P, Sabine C, Bala G et al (2013) Carbon and other biogeochemical cycles. In: Stocker TF, Qin D, Plattner GK (eds) Climate change 2013: the physical science basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 465–570

    Google Scholar 

  • Clavier J, Chauvaud L, Carlier A et al (2011) Aerial and underwater carbon metabolism of a Zostera noltii seagrass bed in the Banc d’Arguin, Mauritania. Aquat Bot 95:24–30

    Article  CAS  Google Scholar 

  • Danckwerts PV (1951) Significance of liquid-film coefficients in gas absorption. Ind Eng Chem 43:1460–1467

    Article  CAS  Google Scholar 

  • Dickson AG, Sabine CL, Christian JR (eds) (2007) Guide to best practice for ocean CO2 measurement, PICES special publication, vol 3. North Pacific Marine Science Organization, Sidney

    Google Scholar 

  • Duarte CM, Wu J, Xiao X et al (2017) Can seaweed farming play a role in climate change mitigation and adaptation? Front Mar Sci 4:100. https://doi.org/10.3389/fmars.2017.00100

    Article  Google Scholar 

  • Frankignoulle M (1988) Field measurements of air–sea CO2 exchange. Limnol Oceanogr 33:313–322

    Article  CAS  Google Scholar 

  • Frankignoulle M, Canon C, Gattuso JP (1994) Marine calcification as a source of carbon dioxide: positive feedback of increasing atmospheric CO2. Limnol Oceanogr 39:458–462

    Article  CAS  Google Scholar 

  • Gattuso JP, Pichon MR, Delesalle B et al (1996) Carbon fluxes in coral reefs. I. Lagrangian measurements of community metabolism and resulting air-sea CO2 disequilibrium. Mar Ecol Prog Ser 145:109–121

    Article  Google Scholar 

  • Hansson I (1973) A new set of pH-scales and standard buffers for sea water. Deep Sea Res Oceanogr Abstr 20:479–491

    Article  CAS  Google Scholar 

  • Hemminga MA, Mateo MA (1996) Stable carbon isotopes in seagrasses: variability in ratios and use in ecological studies. Mar Ecol Prog Ser 140:285–298

    Article  Google Scholar 

  • Hill R, Bellgrove A, Macreadie PI et al (2015) Can macroalgae contribute to blue carbon? An Australian perspective. Limnol Oceanogr 60:1689–1706

    Article  CAS  Google Scholar 

  • Howard JL, Creed JC, Aguiar MV et al (2017) CO2 released by carbonate sediment production in some coastal areas may offset the benefits of seagrass “Blue Carbon” storage. Limnol Oceanogr 63:160–172. https://doi.org/10.1002/lno.10621

    Article  CAS  Google Scholar 

  • Ikawa H, Oechel WC (2014) Temporal variations in air-water CO2 exchange near large kelp beds near San Diego, California. J Gephys Res Oceans 120:50–63

    Article  Google Scholar 

  • Jähne B, Heinz G, Dietrich W (1987) Measurement of the diffusion-coefficients of sparingly soluble gases in water. J Geophys Res Oceans 92:10767–10776

    Article  Google Scholar 

  • Jiang Z, Huang X, Zhang J et al (2014) The effects of air exposure on the desiccation rate and photosynthetic activity of Thalassia hemprichii and Enhalus acoroides. Mar Biol 161:1051–1061

    Article  CAS  Google Scholar 

  • Kayanne H, Suzuki A, Saito H (1995) Diurnal changes in the partial pressure of carbon dioxide in coral reef water. Science 269:214–216

    Article  CAS  Google Scholar 

  • Kayanne H, Hata H, Kudo S et al (2005) Seasonal and bleaching-induced changes in coral reef metabolism and CO2 flux. Glob Biogeochem Cycles 19:GB3015. https://doi.org/10.1029/2004GB002400

    Article  CAS  Google Scholar 

  • Kondo J (2000) Atmosphere science near the ground surface. University of Tokyo Press, Tokyo

    Google Scholar 

  • Kone YJM, Abril G, Kouadio KN, Delille B, Borges AV (2009) Seasonal variability of carbon dioxide in the rivers and lagoons of Ivory Coast (West Africa). Estuar Coast 32:246–260

    Article  CAS  Google Scholar 

  • Krause-Jensen D, Duarte CM (2016) Substantial role of macroalgae in marine carbon sequestration. Nat Geosci 9:737–742

    Article  CAS  Google Scholar 

  • Kuwae T, Kamio K, Inoue T et al (2006) Oxygen exchange flux between sediment and water in an intertidal sandflat, measured in situ by the eddy-correlation method. Mar Ecol Prog Ser 307:59–68

    Article  CAS  Google Scholar 

  • Kuwae T, Kanda J, Kubo A et al (2016) Blue carbon in human-dominated estuarine and shallow coastal systems. Ambio 45:290–301

    Article  CAS  Google Scholar 

  • Kuwae T, Kanda J, Kubo A, Nakajima F, Ogawa H, Sohma A, Suzumura M (2018) CO2 uptake in the shallow coastal ecosystems affected by anthropogenic impacts. In: Kuwae T, Hori M (eds) Blue carbon in shallow coastal ecosystems: carbon dynamics, policy, and implementation. Springer, Singapore, pp 295–319

    Google Scholar 

  • Laruelle GG, Dürr HH, Slomp CP et al (2010) Evaluation of sinks and sources of CO2 in the global coastal ocean using a spatially-explicit typology of estuaries and continental shelves. Geophys Res Lett 37:L15607. https://doi.org/10.1029/2010GL043691

    Article  CAS  Google Scholar 

  • Lauerwald R, Laruelle GG, Hartmann J et al (2015) Spatial patterns in CO2 evasion from the global river network. Glob Biogeochem Cycles 29:534–554

    Article  CAS  Google Scholar 

  • Le Quéré C, Andrew RM, Friedlingstein P et al (2018) Global carbon budget 2017. Earth Syst Sci Data 10:405–448. https://doi.org/10.5194/essd-10-405-2018

    Article  Google Scholar 

  • Lee X, Massman W, Law B (eds) (2004) Coordinate system and flux bias error, handbook of micrometeorology. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Lemaire BJ, Noss C, Lorke A (2017) Toward relaxed eddy accumulation measurements of sediment-water exchange in aquatic ecosystems. Geophys Res Lett 44:8901–8909

    Article  Google Scholar 

  • Leuschner C, Rees U (1993) CO2 gas flux of two intertidal seagrass species, Zostera marina L. a. Aquat Bot 45(1):53–62

    Article  Google Scholar 

  • Macreadie PI, Serrano O, Maher DT et al (2017) Addressing calcium carbonate cycling in blue carbon accounting. Limnol Oceanogr Lett 2:195–201. https://doi.org/10.1002/lol2.10052

    Article  Google Scholar 

  • Maher DT, Eyre BD (2012) Carbon budgets for three autotrophic Australian estuaries: implications for global estimates of the coastal air-water CO2 flux. Glob Biogeochem Cycles 26:GB1032. https://doi.org/10.1029/2011GB004075

    Article  CAS  Google Scholar 

  • Meyers TP, Hall ME, Lindberg SE et al (1996) Use of the modified Bowen-ratio technique to measure fluxes of trace gases. Atmos Environ 30:3321–3329

    Article  CAS  Google Scholar 

  • Moki H, Nakagawa Y, Watanabe K et al (2016) Field observations and numerical analyses on the effect of vegetation on the hydrodynamics of a shallow water using a new hydrodynamic model. Report of the Port and Airport Research Institute 55(2):35–59 (in Japanese with English abstract)

    Google Scholar 

  • Otani S, Endo T (2018) CO2 flux in tidal flats and salt marshes. In: Kuwae T, Hori M (eds) Blue carbon in shallow coastal ecosystems: carbon dynamics, policy, and implementation. Springer, Singapore, pp 223–250

    Google Scholar 

  • Regnier P, Friedlingstein P, Ciais P et al (2013) Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat Geosci 6:597–607

    Article  CAS  Google Scholar 

  • Stuiver M, Polach HA (1977) Discussion: reporting of 14C data. Radiocarbon 19:355–363

    Article  Google Scholar 

  • Suzuki A, Kawahata H (2004) Reef water CO2 system and carbon production of coral reefs: topographic control of system-level performance. In: Shiyomi M et al (eds) Global environmental change in the ocean and on land. TERRAPUB, Tokyo, pp 229–248

    Google Scholar 

  • Sweeney C, Gloor E, Jacobson AR et al (2007) Constraining global air-sea gas exchange for CO2 with recent bomb 14C measurements. Glob Biogeochem Cycles 21:GB2015. https://doi.org/10.1029/2006GB002784

    Article  CAS  Google Scholar 

  • Tada K, Tokoro T, Watanabe K et al (2014a) Spatial distribution of air-sea CO2 flux and its influencing factors at the Lake Komuke, Hokkaido. J Jpn Soc Civ Eng Ser B3 70:I_1188–I_1193 (in Japanese with English abstract)

    Google Scholar 

  • Tada K, Tokoro T, Watanabe K et al (2014b) Continuous measurements of air-sea CO2 flux in an eelgrass meadow. J Jpn Soc Civ Eng Ser B2 70:I_1191–I_1195 (in Japanese with English abstract)

    Google Scholar 

  • Tada K, Tokoro T, Watanabe K et al (2015) Observation and statistical predictions of CO2 fugacity shallow waters in Japan. J Jpn Soc Civ Eng Ser B2 71:I_1333–I_1338 (in Japanese with English abstract)

    Google Scholar 

  • Takahashi T, Sutherland S, Wanninkhof R et al (2009) Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep Sea Res II 56:554–577

    Article  CAS  Google Scholar 

  • Tokoro T, Kuwae T (2015) Data management of air-sea CO2 gas exchanges by the eddy covariance technique. J Jpn Soc Civ Eng Ser B2 71:I_1747–I_1752 (in Japanese with English abstract)

    Google Scholar 

  • Tokoro T, Kuwae T (2018) Improved post-processing of eddy-covariance data to quantify atmosphere-aquatic ecosystem CO2 exchanges. Front Mar Sci 5: 286. doi: 10.3389/fmars.2018.00286

    Google Scholar 

  • Tokoro T, Watanabe A, Kayanne H et al (2007) Measurement of air-water CO2 transfer at four coastal sites using a chamber method. J Mar Syst 66:140–149

    Article  Google Scholar 

  • Tokoro T, Kayanne H, Watanabe A et al (2008) High gas-transfer velocity in coastal regions with high energy-dissipation rates. J Geophys Res Oceans 113:C11006. https://doi.org/10.1029/2007JC004528

    Article  Google Scholar 

  • Tokoro T, Hosokawa S, Miyoshi E et al (2014) Net uptake of atmospheric CO2 by coastal submerged aquatic vegetation. Glob Chang Biol 20:1873–1884

    Article  Google Scholar 

  • Tsunogai S, Watanabe S, Sato T (1999) Is there a continental shelf pump for the absorption of atmospheric CO2? Tellus 51:701–712

    Article  Google Scholar 

  • Wanninkhof R (1992) Relationship between wind-speed and gas-flux over the ocean. J Geophys Res Oceans 97:7373–7382

    Article  Google Scholar 

  • Ware JR, Smith SV, Reaka-Kudla ML (1992) Coral reefs: sources or sinks of atmospheric CO2? Coral Reefs 11:127–130

    Article  Google Scholar 

  • Watanabe K, Kuwae T (2015a) Radiocarbon isotopic evidence for assimilation of atmospheric CO2 by the seagrass Zostera marina. Biogeosciences 12:6251–6258

    Article  CAS  Google Scholar 

  • Watanabe K, Kuwae T (2015b) How organic carbon derived from multiple sources contributes to carbon sequestration processes in a shallow coastal system? Glob Chang Biol 21:2612–2623

    Article  Google Scholar 

  • Watanabe A, Nakamura T (2018) Carbon dynamics in coral reefs, Kuwae T, Hori M Blue carbon in shallow coastal ecosystems: carbon dynamics, policy, and implementation. Springer, Singapore, pp 273-293

    Google Scholar 

  • Watanabe A, Yamamoto T, Nadaoka K et al (2013) Spatiotemporal variations in CO2 flux in a fringing reef simulated using a novel carbonate system dynamics model. Coral Reefs 32:239–254

    Article  Google Scholar 

  • Watson AJ, Upstill-Goddard RC, Liss PS (1991) Air–sea gas flux in rough and stormy seas measured by a dual-tracer technique. Nature 349:145–147

    Article  CAS  Google Scholar 

  • Weiss RF (1974) Carbon dioxide in water and seawater: the solubility of a nonideal gas. Mar Chem 2:203–215

    Article  CAS  Google Scholar 

  • Yoshida G, Hori M, Shimabukuro H, Hamaoka H, Onitsuka T, Hasegawa N, Muraoka D, Yatsuya K, Watanabe K, Nakaoka M (2018) Carbon sequestration by seagrass and macroalgae in Japan: estimates and future needs. In: Kuwae T, Hori M (eds) Blue carbon in shallow coastal ecosystems: carbon dynamics, policy, and implementation. Springer, Singapore, pp 101–127

    Google Scholar 

  • Zeebe RE, Wolf-Gladrow D (2001) CO2 in seawater: equilibrium, kinetics, isotopes. Elsevier, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiro Kuwae .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tokoro, T., Watanabe, K., Tada, K., Kuwae, T. (2019). Air–Water CO2 Flux in Shallow Coastal Waters: Theory, Methods, and Empirical Studies. In: Kuwae, T., Hori, M. (eds) Blue Carbon in Shallow Coastal Ecosystems. Springer, Singapore. https://doi.org/10.1007/978-981-13-1295-3_6

Download citation

Publish with us

Policies and ethics