Skip to main content

CO2 Uptake in the Shallow Coastal Ecosystems Affected by Anthropogenic Impacts

  • Chapter
  • First Online:
Blue Carbon in Shallow Coastal Ecosystems

Abstract

Shallow coastal ecosystems (SCEs) are generally recognized as not only significant organic carbon reservoirs but also as sources for CO2 emission to the atmosphere, thus posing a dilemma regarding their role in climate change mitigation measures. However, we argue that SCEs can act as sinks for atmospheric CO2 under a given set of biogeochemical and socioeconomic conditions. The key properties of SCEs that show net uptake of atmospheric CO2 are often characteristic of human-dominated systems, that is, high nutrient inputs from terrestrial systems, input of treated wastewater in which labile carbon has been mostly removed, and the presence of hypoxic waters. We propose a new perspective on the potential of human-dominated SCEs to contribute to climate change mitigation, both serving as carbon reservoirs and providing direct net uptake of atmospheric CO2, in light of human systems–ecosystem interactions. Namely, if we view the land and a SCE as an integrated system, with appropriate management of both wastewater treatment and SCE, we will be able to not only suppress CO2 release but also capture and store carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abo K, Sugimatsu K, Hori M et al (2018) Quantifying the fate of captured carbon: from seagrass meadow to deep sea. In: Kuwae T, Hori M (eds) Blue carbon in shallow coastal ecosystems: carbon dynamics, policy, and implementation. Springer, Singapore, pp 251–271

    Google Scholar 

  • Akhand A, Chanda A, Manna S et al (2016) A comparison of CO2 dynamics and air-water fluxes in a river-dominated estuary and a mangrove-dominated marine estuary. Geophys Res Lett 43:11726–11735

    CAS  Google Scholar 

  • Akhand A, Chanda A, Das S, Hazra S, Kuwae T (2018) CO2 fluxes in mangrove ecosystems. In: Kuwae T, Hori M (eds) Blue carbon in shallow coastal ecosystems: carbon dynamics, policy, and implementation. Springer, Singapore, pp 185–221

    Google Scholar 

  • Andersson AJ, Mackenzie FT (2004) Shallow-water oceans: a source or sink of atmospheric CO2? Front Ecol Environ 2:348–353

    Google Scholar 

  • Arrieta JM, Mayol E, Hansman RL, Herndl GJ, Dittmar T, Duarte CM (2015) Dilution limits dissolved organic carbon utilization in the deep ocean. Science 348:331–333

    CAS  Google Scholar 

  • Bakker DC, de Baar HJ, de Wilde HP (1996) Dissolved carbon dioxide in Dutch coastal waters. Mar Chem 55:247–263

    CAS  Google Scholar 

  • Bauer JE, Cai WJ, Raymond PA, Bianchi TS, Hopkinson CS, Regnier PA (2013) The changing carbon cycle of the coastal ocean. Nature 504:61–70

    CAS  Google Scholar 

  • Borges A, Abril G (2011) Carbon dioxide and methane dynamics in estuaries. In: Wolanski E, McLusky D (eds) Treatise on estuarine and coastal science, volume 5: biogeochemistry. Academic, Waltham, pp 119–161

    Google Scholar 

  • Borges AV, Delille B, Frankignoulle M (2005) Budgeting sinks and sources of CO2 in the coastal ocean: diversity of ecosystem counts. Geophys Res Lett 32:L14601

    Google Scholar 

  • Cai WJ (2011) Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration? Annu Rev Mar Sci 3:123–145

    Google Scholar 

  • Canfield DE (1994) Factors influencing organic carbon preservation in marine sediments. Chem Geol 114:315–329

    CAS  Google Scholar 

  • Chambers JQ, Higuchi N, Tribuzy ES, Trumbore SR (2001) Carbon sinks for a century. Nature 410:429

    CAS  Google Scholar 

  • Chen CTA, Zhai W, Dai M (2008) Riverine input and air–sea CO2 exchanges near the Changjiang (Yangtze River) estuary: status quo and implication on possible future changes in metabolic status. Cont Shelf Res 28:1476–1482

    Google Scholar 

  • Chen CTA, Huang TH, Fu YH, Bai Y, He X (2012) Strong sources of CO2 in upper estuaries become sinks of CO2 in large river plumes. Curr Opin Environ Sustain 4:179–185

    Google Scholar 

  • Chen CTA, Huang TH, Chen YC, Bai Y, He X, Kang Y (2013) Air–sea exchange of CO2 in world’s coastal seas. Biogeosciences 10:6509–6544

    CAS  Google Scholar 

  • Cole JJ, Prairie YT, Caraco NF et al (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:172–185

    Google Scholar 

  • Cotovicz LC Jr, Knoppers BA, Brandini N, Santos SC, Abril G (2015) A strong CO2 sink enhanced by eutrophication in a tropical coastal embayment (Guanabara Bay, Rio de Janeiro, Brazil). Biogeosciences 12:6125–6146

    CAS  Google Scholar 

  • Crosswell JR, Wetz MS, Hales B, Paerl HW (2012) Air–water CO2 fluxes in the microtidal Neuse River estuary, North Carolina. J Geophys Res 117:C8

    Google Scholar 

  • Crosswell JR, Anderson IC, Stanhope JW et al (2017) Carbon budget of a shallow, lagoonal estuary: transformations and source-sink dynamics along the river-estuary-ocean continuum. Limnol Oceanogr 62:S29–S45

    CAS  Google Scholar 

  • Cusack DF, Axsen J, Shwom R, Hartzell-Nichols L, White S, Mackey KRM (2014) An interdisciplinary assessment of climate engineering strategies. Front Ecol Environ 12:280–287

    Google Scholar 

  • Delille B, Borges AV, Delille D (2009) Influence of giant kelp beds (Macrocystis pyrifera) on diel cycles of pCO2 and DIC in the Sub-Antarctic coastal area. Estuar Coast Shelf Sci 81:114–122

    Google Scholar 

  • Duarte CM, Krause-Jensen D (2017) Export from seagrass meadows contributes to marine carbon sequestration. Front Mar Sci 4:13

    Google Scholar 

  • Duarte CM, Losada IJ, Hendriks IE, Mazarrasa I, Marbà N (2013) The role of coastal plant communities for climate change mitigation and adaptation. Nat Clim Chang 3:961–968

    CAS  Google Scholar 

  • Dubois S, Savoye N, Grémare A et al (2012) Origin and composition of sediment organic matter in a coastal semi-enclosed ecosystem: an elemental and isotopic study at the ecosystem space scale. J Mar Syst 94:64–73

    Google Scholar 

  • Endo T, Otani S (2018) Carbon storage in tidal flats. In: Kuwae T, Hori M (eds) Blue carbon in shallow coastal ecosystems: carbon dynamics, policy, and implementation. Springer, Singapore, pp 129–151

    Google Scholar 

  • Evans W, Hales B, Strutton PG (2013) pCO2 distributions and air–water CO2 fluxes in the Columbia River estuary. Estuar Coast Shelf Sci 117:260–272

    CAS  Google Scholar 

  • Fourqurean JW, Duarte CM, Kennedy H et al (2012) Seagrass ecosystems as a globally significant carbon stock. Nat Geosci 5:505–509

    CAS  Google Scholar 

  • Fujii T, Fujiwara T, Nakayama K (2013) Fluxes of carbon dioxide in the eastern regions of Osaka Bay. JSCE Ann J Coast Eng 69:1111–1115 (in Japanese, English summary)

    Google Scholar 

  • Gattuso JP, Frankignoulle M, Wollast R (1998) Carbon and carbonate metabolism in coastal aquatic ecosystems. Annu Rev Ecol Syst 29:405–434

    Google Scholar 

  • Gazeau F, Borges AV, Barron C et al (2005) Net ecosystem metabolism in a micro-tidal estuary (Randers Fjord, Denmark): evaluation of methods. Mar Ecol Prog Ser 301:23–41

    CAS  Google Scholar 

  • Grimm NB, Faeth SH, Golubiewski NE et al (2008) Global change and the ecology of cities. Science 319:756–760

    CAS  Google Scholar 

  • Hartnett HE, Keil RG, Hedges JI, Devol AH (1998) Influence of oxygen exposure time on organic carbon preservation in continental margin sediments. Nature 391:572–574

    CAS  Google Scholar 

  • Hendriks IE, Sintes T, Bouma T, Duarte CM (2007) Experimental assessment and modeling evaluation of the effects of seagrass (P. oceanica) on flow and particle trapping. Mar Ecol Prog Ser 356:163–173

    Google Scholar 

  • Hunt CW, Salisbury JE, Vandemark D, McGillis W (2011) Contrasting carbon dioxide inputs and exchange in three adjacent New England estuaries. Estuar Coasts 34:68–77

    CAS  Google Scholar 

  • Ikawa H, Oechel WC (2015) Temporal variations in air-sea CO2 exchange near large kelp beds near San Diego, California. J Geophys Res Ocean 120:50–63

    CAS  Google Scholar 

  • Inoue T (2018) Carbon sequestration in mangroves. In: Kuwae T, Hori M (eds) Blue carbon in shallow coastal ecosystems: carbon dynamics, policy, and implementation. Springer, Singapore, pp 73–99

    Google Scholar 

  • IPCC (2013) Fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva

    Google Scholar 

  • Jiao N, Robinson C, Azam F et al (2014) Mechanisms of microbial carbon sequestration in the ocean: future research directions. Biogeosciences 11:5285–5306

    Google Scholar 

  • Kaushal SS, Belt KT (2012) The urban watershed continuum: evolving spatial and temporal dimensions. Urban Ecosyst 15:409–435

    Google Scholar 

  • Kayanne H, Suzuki A, Saito H (1995) Diurnal changes in the partial pressure of carbon dioxide in coral reef water. Science 269:214–216

    CAS  Google Scholar 

  • Kayanne H, Hata H, Kudo S et al (2005) Seasonal and bleaching-induced changes in coral reef metabolism and CO2 flux. Glob Biogeochem Cycles 19:GB3015

    Google Scholar 

  • Kennedy H, Beggins J, Duarte CM et al (2010) Seagrass sediments as a global carbon sink: isotopic constraints. Glob Biogeochem Cycles 24:GB4026

    Google Scholar 

  • Koho KA, Nierop KGJ, Moodley L et al (2013) Microbial bioavailability regulates organic matter preservation in marine sediments. Biogeosciences 10:1131–1141

    Google Scholar 

  • Kone YJM, Abril G, Kouadio KN, Delille B, Borges AV (2009) Seasonal variability of carbon dioxide in the rivers and lagoons of Ivory Coast (West Africa). Estuar Coasts 32:246–260

    CAS  Google Scholar 

  • Kouame KV, Yapo OB, Mambo V, Seka A, Tidou AS, Houenou P (2009) Physicochemical characterization of the waters of the coastal rivers and the lagoonal system of Cote d’Ivoire. J Appl Sci 9:1517–1523

    CAS  Google Scholar 

  • Kragh T, Søndergaard M (2009) Production and decomposition of new DOC by marine plankton communities: carbohydrates, refractory components and nutrient limitation. Biogeochemistry 96:177–187

    CAS  Google Scholar 

  • Krause-Jensen D, Duarte CM (2016) Substantial role of macroalgae in marine carbon sequestration. Nat Geosci 9:737–742

    CAS  Google Scholar 

  • Kubo A, Kanda J (2017) Seasonal variations and sources of sedimentary organic carbon in Tokyo Bay. Mar Pollut Bull 114:637–643

    CAS  Google Scholar 

  • Kubo A, Kawai MY, Kanda J (2015) Seasonal variations in concentration and composition of dissolved organic carbon in Tokyo Bay. Biogeosciences 12:269–279

    CAS  Google Scholar 

  • Kubo A, Maeda Y, Kanda J (2017) A significant net sink for CO2 in Tokyo Bay. Sci Rep 7:44355

    CAS  Google Scholar 

  • Kuwae T, Hori M (2018) The future of blue carbon: addressing global environmental issues. In: Kuwae T, Hori M (eds) Blue carbon in shallow coastal ecosystems: carbon dynamics, policy, and implementation. Springer, Singapore, pp 347–373

    Google Scholar 

  • Kuwae T, Kanda J, Kubo A et al (2016) Blue carbon in human-dominated estuarine and shallow coastal systems. Ambio 45:290–301

    CAS  Google Scholar 

  • Laruelle GG, Durr HH, Lauerwald R et al (2013) Global multi-scale segmentation of continental and coastal waters from the watersheds to the continental margins. Hydrol Earth Syst Sci 17:2029–2051

    Google Scholar 

  • Lønborg C, Álvarez-Salgado XA, Davidson K, Miller AE (2009) Production of bioavailable and refractory dissolved organic matter by coastal heterotrophic microbial populations. Estuar Coast Shelf Sci 82:682–688

    Google Scholar 

  • Longhurst AR, Harrison WG (1989) The biological pump: profiles of plankton production and consumption in the upper ocean. Prog Oceanogr 22:47–123

    Google Scholar 

  • Lovelock CE, Atwood T, Baldock J et al (2017) Assessing the risk of carbon dioxide emissions from blue carbon ecosystems. Front Ecol Environ 15:257–265

    Google Scholar 

  • Macreadie PI, Baird ME, Trevathan-Tackett SM, Larkum AWD, Ralph PJ (2014) Quantifying and modelling the carbon sequestration capacity of seagrass meadows: a critical assessment. Mar Pollut Bull 83:430–439

    CAS  Google Scholar 

  • Maher DT, Eyre BD (2012) Carbon budgets for three autotrophic Australian estuaries: implications for global estimates of the coastal air-water CO2 flux. Glob Biogeochem Cycles 26:GB1032

    Google Scholar 

  • McIntyre NE, Knowles-Yánez K, Hope D (2000) Urban ecology as an interdisciplinary field: differences in the use of “urban” between the social and natural sciences. Urban Ecosyst 4:5–24

    Google Scholar 

  • McLeod E, Chmura GL, Bouillon S et al (2011) A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front Ecol Environ 9:552–560

    Google Scholar 

  • Middelburg JJ, Nieuwenhuize J, Lubberts RK, van de Plassche O (1997) Organic carbon isotope systematics of coastal marshes. Estuar Coast Shelf Sci 45:681–687

    CAS  Google Scholar 

  • Miyajima T, Hamaguchi M (2018) Carbon sequestration in sediment as an ecosystem function of seagrass meadows. In: Kuwae T, Hori M (eds) Blue carbon in shallow coastal ecosystems: carbon dynamics, policy, and implementation. Springer, Singapore, pp 33–71

    Google Scholar 

  • Miyajima T, Hori M, Hamaguchi M et al (2015) Geographic variability in organic carbon stock and accumulation rate in sediments of East and Southeast Asian seagrass meadows. Glob Biogeochem Cycles 29:397–415

    CAS  Google Scholar 

  • Miyajima T, Hori M, Hamaguchi M, Shimabukuro H, Yoshida G (2017) Geophysical constraints for organic carbon sequestration capacity of Zostera marina seagrass meadows and surrounding habitats. Limnol Oceanogr 62:954–972

    CAS  Google Scholar 

  • Moran MA, Sheldon WM, Zepp RG (2000) Carbon loss and optical property changes during long-term photochemical and biological degradation of estuarine dissolved organic matter. Limnol Oceanogr 45:1254–1264

    CAS  Google Scholar 

  • Nellemann C, Corcoran E, Duarte CM et al (2009) Blue carbon: a rapid response assessment. United Nations Environmental Programme, GRID-Arendal, Birkeland Trykkeri AS, Birkeland

    Google Scholar 

  • Obrador B, Pretus JL (2012) Budgets of organic and inorganic carbon in a Mediterranean coastal lagoon dominated by submerged vegetation. Hydrobiology 699:35–54

    CAS  Google Scholar 

  • Ogawa H, Amagai Y, Koike I, Kaiser K, Benner R (2001) Production of refractory dissolved organic matter by bacteria. Science 292:917–920

    CAS  Google Scholar 

  • Otani S, Endo T (2018) CO2 flux in tidal flats and salt marshes. In: Kuwae T, Hori M (eds) Blue carbon in shallow coastal ecosystems: carbon dynamics, policy, and implementation. Springer, Singapore, pp 223–250

    Google Scholar 

  • Parkin GF, Owen WF (1986) Fundamentals of anaerobic digestion of wastewater sludges. J Environ Eng 112:867–920

    CAS  Google Scholar 

  • Pendleton L, Donato DC, Murray BC et al (2012) Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS One 7:e43542

    CAS  Google Scholar 

  • Le Quéré C, Moriarty R, Andrew RM et al (2018) Global Carbon Budget 2017. Earth Syst Sci Data 10:405–448

    Google Scholar 

  • Raymond PA, Bauer JE, Cole JJ (2000) Atmospheric CO2 evasion, dissolved inorganic carbon production, and net heterotrophy in the York River estuary. Limnol Oceanogr 45:1707–1717

    CAS  Google Scholar 

  • Raymond PA, Hartmann J, Lauerwald R et al (2013) Global carbon dioxide emissions from inland waters. Nature 503:355–359

    CAS  Google Scholar 

  • Regnier PAG, Friedlingstein P, Ciais P et al (2013) Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat Geosci 6:597–607

    CAS  Google Scholar 

  • Rysgaard S, Mortensen J, Juul-Pedersen T et al (2012) High air–sea CO2 uptake rates in nearshore and shelf areas of southern Greenland: temporal and spatial variability. Mar Chem 128:26–33

    Google Scholar 

  • Sedlak RI (1991) Phosphorus and nitrogen removal from municipal wastewater: principles and practice. CRC Press, Boca Raton

    Google Scholar 

  • Sholkovitz ER (1976) Flocculation of dissolved organic and inorganic matter during the mixing of river water and seawater. Geochim Cosmochim Acta 40:831–845

    CAS  Google Scholar 

  • Smith SV (1981) Marine macrophytes as a global carbon sink. Science 211:838–840

    CAS  Google Scholar 

  • Sugimatsu K, Yagi H, Abo K et al (2015) A coupled particle tracking– carbon cycle modeling system for sedimentary organic carbon derived from drafting seagrass in Seto Inland Sea. JSCE Annu J Coast Eng 71:1387–1392 (in Japanese, English summary)

    Google Scholar 

  • Tanaka Y, Ogawa H, Miyajima T (2011a) Bacterial decomposition of coral mucus as evaluated by long-term and quantitative observation. Coral Reefs 30:443–449

    Google Scholar 

  • Tanaka Y, Ogawa H, Miyajima T (2011b) Production and bacterial decomposition of dissolved organic matter in a fringing coral reef. J Oceanogr 67:427–437

    CAS  Google Scholar 

  • Taylor PG, Townsend AR (2010) Stoichiometric control of organic carbon–nitrate relationships from soils to the sea. Nature 464:1178–1181

    CAS  Google Scholar 

  • Tokoro T, Hosokawa S, Miyoshi E et al (2014) Net uptake of atmospheric CO2 by coastal submerged aquatic vegetation. Glob Chang Biol 20:1873–1884

    Google Scholar 

  • Tokoro T, Watanabe K, Tada K, Kuwae T (2018) Air–water CO2 flux in shallow coastal waters: theoretical background, measurement methods, and mechanisms. In: Kuwae T, Hori M (eds) Blue carbon in shallow coastal ecosystems: carbon dynamics, policy, and implementation. Springer, Singapore, pp 153–184

    Google Scholar 

  • Tsunogai S, Watanabe S, Sato T (1999) Is there a continental shelf pump for the absorption of atmospheric CO2? Tellus 51:701–712

    Google Scholar 

  • Wada S, Aoki MN, Mikami A et al (2008) Bioavailability of macroalgal dissolved organic matter in seawater. Mar Ecol Prog Ser 370:33–44

    CAS  Google Scholar 

  • Wanninkhof R (1992) Relationship between wind-speed and gas-exchange over the ocean. J Geophys Res 97:7373–7382

    Google Scholar 

  • Watanabe K, Kuwae T (2015) How organic carbon derived from multiple sources contributes to carbon sequestration processes in a shallow coastal system. Glob Chang Biol 21:2612–2623

    Google Scholar 

  • Watanabe A, Nakamura T (2018) Carbon dynamics in coral reefs. In: Kuwae T, Hori M (eds) Blue carbon in shallow coastal ecosystems: carbon dynamics, policy, and implementation. Springer, Singapore, pp 273–293

    Google Scholar 

  • Watanabe A, Yamamoto T, Nadaoka K et al (2013) Spatiotemporal variations in CO2 flux in a fringing reef simulated using a novel carbonate system dynamics model. Coral Reefs 32:239–254

    Google Scholar 

  • Zhai W, Dai M (2009) On the seasonal variation of air–sea CO2 fluxes in the outer Changjiang (Yangtze River) Estuary, East China Sea. Mar Chem 117:2–10

    CAS  Google Scholar 

  • Zonneveld KAF, Versteegh GJM, Kasten S et al (2010) Selective preservation of organic matter in marine environments: processes and impact on the sedimentary record. Biogeosciences 7:483–511

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiro Kuwae .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kuwae, T. et al. (2019). CO2 Uptake in the Shallow Coastal Ecosystems Affected by Anthropogenic Impacts. In: Kuwae, T., Hori, M. (eds) Blue Carbon in Shallow Coastal Ecosystems. Springer, Singapore. https://doi.org/10.1007/978-981-13-1295-3_11

Download citation

Publish with us

Policies and ethics