Skip to main content

Mitigating Arsenic Toxicity in Plants: Role of Microbiota

  • Chapter
  • First Online:
Mechanisms of Arsenic Toxicity and Tolerance in Plants

Abstract

Arsenic (As) pollution, particularly in soil and water, is a very prominent environmental issue which seriously threatens plant growth, development, and productivity. Since As is ubiquitous in the natural environment, microorganisms have developed mechanisms to resist the toxic effects of this metalloid. A large number of microorganisms, viz. Acinetobacter, Aeromonas, Bacillus, Exiguobacterium, and Pseudomonas, are capable of growing in the presence of high concentrations of As. But relatively less information is available on accumulation, mobilization, distribution, and speciation of As by rhizospheric microbiota and their impact on plant growth and development. The use of As-resistant and plant growth promoting microorganisms (PGPMs) for the restoration of plants growing on contaminated soils is the need of the time. The use of PGPM occupies a small but growing niche in the development of organic agriculture and has attracted attention during the last decade only. There are several reports revealing the multifarious role of soil microbiota in amelioration of As toxicity and improving metal tolerance in plants. Colonization of PGPMs helps the host plant to overcome As-induced phosphate (P) deficiency and consequently maintain favorable P:As ratio. Further, they also improve nutritional status and reduce As uptake and translocation in plants. Inoculation of bacteria/fungi can exert protective effects on vascular plants under As contamination by transforming more toxic inorganic forms into less toxic organic forms or via reducing the concentration of As by enhancing plant biomass. The PGPMs also result in higher activities of the antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase, and guaiacol peroxidase) and accumulation of nonenzymatic antioxidants (carotenoids, ascorbic acid, proline, and α-tocopherol). Increased concentrations of cysteine, glutathione, and non-protein thiols, and activity of glutathione S-transferase have also been reported that facilitate sequestration of As into nontoxic complexes. Thus, application of As-resistant PGPMs could provide a low cost and eco-friendly mitigation approach to diminish As accumulation in plants, thereby promoting higher growth, development, and yield responses. There is also a need to improve our understanding of the mechanisms involved in extenuating toxic effects of As by rhizospheric microbiota and to improve the stabilization of plants in contaminated sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aksakal O, Esim N (2015) Evaluation of arsenic trioxide genotoxicity in wheat seedlings using oxidative system and RAPD assays. Environ. Sci Pollut Res 22:7120–7128

    Article  CAS  Google Scholar 

  • Álvarez-Ayuso E, Abad-Valle P, Murciego A, Villar-Alonso P (2015) Arsenic distribution in soils and rye plants of a cropland located in an abandoned mining area. Sci Total Environ 542:238–246

    Article  PubMed  CAS  Google Scholar 

  • Ansari SA, Husain Q (2012) Potential applications of enzymes immobilized on/in nano materials: a review. Biotechnol Adv 30:512–523

    Article  CAS  PubMed  Google Scholar 

  • Ao L, Zeng XC, Nie Y, Mu Y, Zhou L, Luo X (2014) Flavobacterium arsenatis sp. nov., a novel arsenic-resistant bacterium from high-arsenic sediment. Int J Syst Evol Microbiol 64:3369–3374

    Article  PubMed  CAS  Google Scholar 

  • Arora NK, Tewari S, Singh R (2013) Multifaceted plant-associated microbes and their mechanisms diminish the concept of direct and indirect PGPRs. In: Arora NK (ed) Plant microbe Symbiosis: fundamentals and advances. Springer, New Delhi, pp 411–449

    Chapter  Google Scholar 

  • Bahar MM, Megharaj M, Naidu R (2012) Arsenic bioremediation potential of a new arsenite-oxidizing bacterium Stenotrophomonas sp. MM-7 isolated from soil. Biodegradation 23:803–812

    Article  CAS  PubMed  Google Scholar 

  • Banerjee S, Datta S, Chattyopadhyay D, Sarkar P (2011) Arsenic accumulating and transforming bacteria isolated from contaminated soil for potential use in bioremediation. J Environ Sci Health A Tox Hazard Subst Environ Eng 46:1736–1747

    Article  CAS  PubMed  Google Scholar 

  • Banerjee S, Majumdar J, Samal AC, Bhattachariya P, Santra SC (2013) Biotransformation and bioaccumulation of arsenic by Brevibacillus brevis isolated from arsenic contaminated region of West Bengal. J Environ Sci Toxicol Food Technol 3:1–10

    Google Scholar 

  • Batool K, Tuz Zahra F, Rehman Y (2017) Arsenic-redox transformation and plant growth promotion by purple nonsulfur bacteria Rhodopseudomonas palustris CS2 and Rhodopseudomonas faecalis SS5. Biomed Res Int 2017:6250327. https://doi.org/10.1155/2017/6250327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayramoglu G, Altintas B, Arica MY (2013) Immobilization of glucoamylase onto polyaniline-grafted magnetic hydrogel via adsorption and adsorption/cross-linking. Appl Microbiol Biotechnol 97:1149–1159

    Article  CAS  PubMed  Google Scholar 

  • Beneduzi A, Ambrosini A, Passaglia LMP (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35:1044–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bentley R, Chasteen TG (2002) Microbial methylation of metalloids: arsenic, antimony, and bismuth. Microbiol Mol Biol Rev 66:250–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhargavi SD, Savitha J (2014) Arsenate resistant Penicillium coffeae: a potential fungus for soil bioremediation. Bull Environ Contam Toxicol 92:369–373

    Article  CAS  PubMed  Google Scholar 

  • Bhat S, Luo X, Xu Z, Liu L, Zhang R (2011) Bacillus sp. CDB3 isolated from cattle dip sites possesses two ars gene clusters. J Environ Sci 23:95–101

    Article  CAS  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Ca’novas D, Vooijs R, Schat H, de Lorenzo V (2004) The role of thiol species in the Hypertolerance of Aspergillus sp. P37 to Arsenic. J Biol Chem 279:51234–51240

    Article  CAS  Google Scholar 

  • Cai L, Rensing C, Li X, Wang G (2009) Novel gene clusters involved in arsenite oxidation and resistance in two arsenite oxidizers: Achromobacter sp. SY8 and Pseudomonas sp. TS44. Appl Microbiol Biotechnol 83:715–725

    Article  CAS  PubMed  Google Scholar 

  • Cavalca L, Zanchi R, Corsini A, Colombo M, Romagnoli C, Canzi E, Andreoni V (2010) Arsenic-resistant bacteria associated with roots of the wild Cirsium arvense (L.) plant from an arsenic polluted soil, and screening of potential plant growth-promoting characteristics. Syst Appl Microbiol 33:154–164

    Article  CAS  PubMed  Google Scholar 

  • Cavalca L, Corsini A, Bachate SP, Andreoni V (2013) Rhizosphere colonization and arsenic translocation in sunflower (Helianthus annuus L.) by arsenate reducing Alcaligenes sp. strain Dhal-L. World J Microbiol Biotechnol 29:1931–1940

    Article  CAS  PubMed  Google Scholar 

  • Cernanský S, Kolencík M, Sevc J, Urík M, Hiller E (2009) Fungal volatilization of trivalent and pentavalent arsenic under laboratory conditions. Bioresour Technol 100:1037–1040

    Article  PubMed  CAS  Google Scholar 

  • Chandrakar V, Naithani SC, Keshavkant S (2016) Arsenic-induced metabolic disturbances and their mitigation mechanisms in crop plants: a review. Biologia 71:367–377

    Article  CAS  Google Scholar 

  • Chandrakar V, Yadu B, Meena RK, Dubey A, Keshavkant S (2017) Arsenic-induced genotoxic responses and their amelioration by diphenylene iodonium, 24-epibrassinolide and proline in Glycine max L. Plant Physiol Biochem 112:74–86

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Xiao X, Zhu YG, Smith FA, Xie ZM, Smith SE (2007) The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorus and arsenic acquisition by Medicago sativa Linn. Sci Total Environ 379:226–234

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Qin J, Zhu YG, de Lorenzo V, Rosen BP (2013) Engineering the soil bacterium Pseudomonas putida for arsenic methylation. Appl Environ Microbiol 79:4493–4495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Sun GX, Wang XX, Vd L, Rosen BP, Zhu YG (2014) Volatilization of arsenic from polluted soil by Pseudomonas putida engineered for expression of the arsM Arsenic(III) S-adenosine methyltransferase gene. Environ Sci Technol 48:10337–10344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choe S-I, Gravelat FN, Abdallah QA, Lee MJ, Gibbs BF, Sheppard DC (2012) Role of Aspergillus niger acrA in arsenic resistance and its use as the basis for an arsenic biosensor. Appl Environ Microbiol 78:3855–3863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhary DK, Prakash A, Johri BN (2007) Induced systemic resistance (ISR) in plants: mechanism of action. Indian J Microbiol 47:289–297

    Article  CAS  PubMed  Google Scholar 

  • Cuebas M, Villafane A, McBride M, Yee N, Bini E (2011) Arsenate reduction and expression of multiple chromosomal ars operons in Geobacillus kaustophilus A1. Microbiology 157:2004–2011

    Article  CAS  PubMed  Google Scholar 

  • Das S, Jean JS, Chou M (2015) Arsenite-oxidizing bacteria exhibiting plant growth promoting traits isolated from the rhizosphere of Oryza sativa L.: implications for mitigation of arsenic contamination in paddies. J Hazard Mater 302:10–18

    Article  PubMed  CAS  Google Scholar 

  • Das S, Jean JS, Chou ML, Rathod J, Liu CC (2016) Arsenite-oxidizing bacteria exhibiting plant growth promoting traits isolated from the rhizosphere of Oryza sativa L.: implications for mitigation of arsenic contamination in paddies. J Hazard Mater 302:10–18

    Article  CAS  PubMed  Google Scholar 

  • Deepika KV, Raghuram M, Kariali E, Bramhachari PV (2016) Biological responses of symbiotic Rhizobium radiobacter strain VBCK1062 to the arsenic contaminated rhizosphere soils of mung bean. Ecotoxicol Environ Saf 134:1–10

    Article  CAS  Google Scholar 

  • Dey R, Pal KK, Bhatt DM, Chauhan SM (2004) Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol Res 159:371–394

    Article  CAS  PubMed  Google Scholar 

  • Dhankher OP, Li Y, Rosen BP, Shi J, Salt D, Senecoff JF, Sashti NA, Meagher RB (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression. Nat Biotechnol 20:1140–1145

    Article  CAS  PubMed  Google Scholar 

  • Dhuldhaj UP, Yadav IC, Singh S, Sharma NK (2013) Microbial interactions in the arsenic cycle: adoptive strategies and applications in environmental management. Rev Environ Contam Toxicol 224:1–38

    CAS  PubMed  Google Scholar 

  • Drewniak L, Dziewit L, Ciezkowska M, Gawor J, Gromadka R, Sklodowska A (2013) Structural and functional genomics of plasmid pSinA of Sinorhizobium sp. M14 encoding genes for the arsenite oxidation and arsenic resistance. J Biotechnol 164:479–488

    Article  CAS  PubMed  Google Scholar 

  • Dwivedi D, Johri BN (2003) Antifungals from fluorescent pseudomonads: biosynthesis and regulation. Curr Sci 12:1693–1703

    Google Scholar 

  • Eş I, Vieira JD, Amaral AC (2015) Principles, techniques, and applications of biocatalyst immobilization for industrial application. Appl Microbiol Biotechnol 99:2065–2082

    Article  PubMed  CAS  Google Scholar 

  • Fitz WJ, Wenzel WW (2002) Arsenic transformations in the soil rhizosphere plant system: fundamentals and potential application to phytoremediation. J Biotechnol 99:259–278

    Article  CAS  PubMed  Google Scholar 

  • Garelick H, Jones H, Dybowska A, Valsami-Jones E (2008) Arsenic pollution sources. Rev Environ Contam Toxicol 197:17–60

    CAS  PubMed  Google Scholar 

  • Ghosh S, Sar P (2013) Identification and characterization of metabolic properties of bacterial populations recovered from arsenic contaminated ground water of North East India (Assam). Water Res 47:6992–7005

    Article  CAS  PubMed  Google Scholar 

  • Ghosh M, Shen J, Rosen BP (1999) Pathways of As(III) detoxification in Saccharomyces cerevisiae. Proc Natl Acad Sci 96:5001–5006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh P, Rathinasabapathi B, Ma LQ (2011) Arsenic-resistant bacteria solubilized arsenic in the growth media and increased growth of arsenic hyperaccumulator Pteris vittata L. Bioresour Technol 102:8756–8761

    Article  CAS  PubMed  Google Scholar 

  • Ghosh P, Rathinasabapathi B, Ma LQ (2015) Phosphorus solubilization and plant growth enhancement by arsenic-resistant bacteria. Chemosphere 134:1–6

    Article  CAS  PubMed  Google Scholar 

  • Gianinazzi-Pearson V (1996) Plant cell responses to arbuscular mycorrhizal fungi: getting to the roots of the Symbiosis. Plant Cell 8:1871–1883

    Article  PubMed  PubMed Central  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:963401. https://doi.org/10.6064/2012/963401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26:227–242

    Article  CAS  Google Scholar 

  • Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V (2015) Plant growth promoting Rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol 7:96–102

    CAS  Google Scholar 

  • Haas D, Keel C, Reimann C (2002) Signal transduction in plant beneficial rhizobacteria with biocontrol properties. Antonie van Leeuw 81:385–395

    Article  CAS  Google Scholar 

  • Heinrich A (2007) Biosorption and biovolatilization of arsenic by heat-resistant fungi. Environ Sci Pollut Res Int 14:31–35. (5 pp)

    Article  PubMed  CAS  Google Scholar 

  • Ho KM, Mao X, Gu L, Li P (2008) Facile route to enzyme immobilization: core-shell nanoenzyme particles consisting of well-defined poly(methyl methacrylate) cores and cellulose shells. Langmuir 24:11036–11042

    Article  CAS  PubMed  Google Scholar 

  • Huang K, Chen C, Shen Q, Rosen BP, Zhao FJ (2015) Genetically engineering Bacillus subtilis with a heat-resistant arsenite methyltransferase for bioremediation of arsenic-contaminated organic waste. Appl Environ Microbiol 81:6718–6724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudson-Edwards KA, Santini JM (2013) Arsenic-microbe-mineral interactions in mining-affected environments. Fortschr Mineral 3:337–351

    Article  CAS  Google Scholar 

  • Islam SM, Fukushi K, Yamamoto K, Saha GC (2007) Estimation of biologic gasification potential of arsenic from contaminated natural soil by enumeration of arsenic methylating bacteria. Arch Environ Contam Toxicol 52:332–338

    Article  CAS  PubMed  Google Scholar 

  • Jankong P, Visoottiviseth P (2008) Effects of arbuscular mycorrhizal inoculation on plants growing on arsenic contaminated soil. Chemosphere 72:1092–1097

    Article  CAS  PubMed  Google Scholar 

  • Jog R, Pandya M, Nareshkumar G, Rajkumar S (2014) Mechanism of phosphate solubilization and antifungal activity of Streptomyces spp. isolated from wheat roots and rhizosphere and their application in improving plant growth. Microbiology 160:778–788

    Article  CAS  PubMed  Google Scholar 

  • Kang BG, Kim WT, Yun HS, Chang SC (2010) Use of plant growth-promoting rhizobacteria to control stress responses of plant roots. Plant Biotechnol Rep 4:179–183

    Article  Google Scholar 

  • Kao AC, Chu YJ, Hsu FL, Liao VH (2013) Removal of arsenic from groundwater by using a native isolated arsenite-oxidizing bacterium. J Contam Hydrol 155:1–8

    Article  CAS  PubMed  Google Scholar 

  • Karn SK, Pan X, Jenkinson IR (2017) Bio-transformation and stabilization of arsenic (As) in contaminated soil using arsenic oxidizing bacteria and FeCl3 amendment. 3 Biotech 7:50. https://doi.org/10.1007/s13205-017-0681-1

  • Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364

    Article  CAS  PubMed  Google Scholar 

  • Krishnamoorthy R, Kim CG, Subramanian P, Kim KY, Selvakumar G, Sa TM (2015) Arbuscular mycorrhizal fungi community structure, abundance and species richness changes in soil by different levels of heavy metal and metalloid concentration. PLoS One 10:e0128784. https://doi.org/10.1371/journal.pone.0128784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kruger MC, Bertin PN, Heipieper HJ, Arsène-Ploetze F (2013) Bacterial metabolism of environmental arsenic mechanisms and biotechnological applications. Appl Microbiol Biotechnol 97:3827–3841

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Bhargava P, Rai LC (2010) Isolation and molecular characterization of phosphate solubilizing Enterobacter and Exiguobacterium species from paddy fields of eastern Uttar Pradesh, India. Afr J Microbiol Res 4:820–829

    CAS  Google Scholar 

  • Kuramata M, Sakakibara F, Kataoka R, Abe T, Asano M, Baba K, Takagi K, Ishikawa S (2015) Arsenic biotransformation by Streptomyces sp. isolated from rice rhizosphere. Environ Microbiol 17:1897–1909

    Article  CAS  PubMed  Google Scholar 

  • Lakshmanan V, Shantharaj D, Li G, Seyfferth AL, Janine Sherrier D, Bais HP (2015) A natural rice rhizospheric bacterium abates arsenic accumulation in rice (Oryza sativa L.). Planta 242:1037–1050

    Article  CAS  PubMed  Google Scholar 

  • Lampis S, Santi C, Ciurli A, Andreolli M, Vallini G (2015) Promotion of arsenic phytoextraction efficiency in the fern Pteris vittata by the inoculation of As-resistant bacteria: a soil bioremediation perspective. Front Plant Sci 6:80. https://doi.org/10.3389/fpls.2015.00080

    Article  PubMed  PubMed Central  Google Scholar 

  • Li B, Lin J, Mi S, Lin J (2010) Arsenic resistance operon structure in Leptospirillum ferriphilum and proteomic response to arsenic stress. Bioresour Technol 101:9811–9814

    Article  CAS  PubMed  Google Scholar 

  • Li P, Wang Y, Dai X, Zhang R, Jiang Z, Jiang D, Wang S, Jiang H, Wang Y, Dong H (2015) Microbial community in high arsenic shallow groundwater aquifers in Hetao Basin of Inner Mongolia, China. PLoS One 10:e0125844. https://doi.org/10.1371/journal.pone.0125844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao VH, Chu YJ, Su YC, Hsiao SY, Wei CC, Liu CW, Liao CM, Shen WC, Chang FJ (2011) Arsenite oxidizing and arsenate reducing bacteria associated with arsenic rich groundwater in Taiwan. J Contam Hydrol 123:20–29

    Article  CAS  PubMed  Google Scholar 

  • Lièvremont D, Bertin PN, Lett MC (2009) Arsenic in contaminated waters: biogeochemical cycle, microbial metabolism and biotreatment processes. Biochimie 91:1229–1237

    Article  PubMed  CAS  Google Scholar 

  • Limoli DH, Jones CJ, Wozniak DJ (2015) Bacterial extracellular polysaccharides in biofilm formation and function. Microbiol Spectr 3:10. https://doi.org/10.1128/microbiolspec.MB-0011-2014

    Article  Google Scholar 

  • Liu Y, Zhu YG, Chen BD, Christie P, Li XL (2005) Yield and arsenate uptake of arbuscular mycorrhizal tomato colonized by Glomus mosseae BEG167 in As spiked soil under glasshouse conditions. Environ Int 31:867–873

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Zhang F, Chen J, Sun G (2011) Arsenic removal from contaminated soil via biovolatilization by genetically engineered bacteria under laboratory conditions. J Environ Sci 23:1544–1550

    Article  CAS  Google Scholar 

  • Ma Y, Oliveira RS, Freitas H, Zhang C (2016) Biochemical and molecular mechanisms of plant-microbe-metal interactions: relevance for phytoremediation. Front Plant Sci 7:918. https://doi.org/10.3389/fpls.2016.00918

    Article  PubMed  PubMed Central  Google Scholar 

  • Majumder A, Ghosh S, Saha N, Kole SC, Sarkar S (2013) Arsenic accumulating bacteria isolated from soil for possible application in bioremediation. J Environ Biol 34:841–846

    PubMed  Google Scholar 

  • Mallick I, Hossain ST, Sinha S, Mukherjee SK (2014) Brevibacillus sp. KUMAs2, a bacterial isolate for possible bioremediation of arsenic in rhizosphere. Ecotoxicol Environ Saf 107:236–244

    Article  CAS  PubMed  Google Scholar 

  • Masson-Boivin C, Giraud E, Perret X, Batut J (2009) Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trends Microbiol 17:458–466

    Article  CAS  PubMed  Google Scholar 

  • Mateos LM, Ordóñez E, Letek M, Gil JA (2006) Corynebacterium glutamicum as a model bacterium for the bioremediation of arsenic. Int Microbiol 9:207–215

    CAS  PubMed  Google Scholar 

  • de Melo RW, Schneider J, de Souza CE, Sousa SC, Guimarães GL, de Souza MF (2014) Phytoprotective effect of arbuscular mycorrhizal fungi species against arsenic toxicity in tropical leguminous species. Int J Phytoremediation 16:840–858

    Article  PubMed  CAS  Google Scholar 

  • Mishra S, Srivastava S, Dwivedi S, Tripathi RD (2013) Investigation of biochemical responses of Bacopa monnieri L. upon exposure to arsenate. Environ Toxicol 28:419–430

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Jiménez E, Esteban E, Peñalosa JM (2012) The fate of arsenic in soil-plant systems. Rev Environ Contam Toxicol 215:1–37

    PubMed  Google Scholar 

  • Mukhopadhyay R, Shi J, Rosen BP (2000) Purification and characterization of ACR2p, the Saccharomyces cerevisiae arsenate reductase. J Biol Chem 275:21149–21157

    Article  CAS  PubMed  Google Scholar 

  • Nagvenkar GS, Ramaiah N (2010) Arsenite tolerance and biotransformation potential in estuarine bacteria. Ecotoxicology 19:604–613

    Article  CAS  PubMed  Google Scholar 

  • Ongena M, Duby F, Rossignol F, Fauconnier ML, Dommes J, Thonart P (2004) Stimulation of the lipooxygenase pathway is associated with systemic resistance induced in bean by a nonpathogenic Pseudomonas strain. Mol Plant-Microbe Interact 17:1009–1018

    Article  CAS  PubMed  Google Scholar 

  • Oremland RS, Stolz JF (2005) Arsenic, microbes and contaminated aquifers. Trends Microbiol 13:45–49

    Article  CAS  PubMed  Google Scholar 

  • Páez-Espino D, Tamames J, de Lorenzo V, Cánovas D (2009) Microbial responses to environmental arsenic. Biometals 22:117–130

    Article  PubMed  CAS  Google Scholar 

  • Pandey N, Bhatt R (2015) Arsenic resistance and accumulation by two bacteria isolated from a natural arsenic contaminated site. J Basic Microbiol 55:1275–1286

    Article  CAS  PubMed  Google Scholar 

  • Pandey N, Bhatt R (2016) Arsenic removal and biotransformation potential of Exiguobacterium isolated from an arsenic- rich soil of Chhattisgarh, India. Clean (Weinh) 44:211–218

    CAS  Google Scholar 

  • Paul D, Poddar S, Sar P (2014) Characterization of arsenite-oxidizing bacteria isolated from arsenic contaminated groundwater of West Bengal. J Environ Sci Health A Tox Hazard Subst Environ Eng 49:1481–1492

    Article  CAS  PubMed  Google Scholar 

  • Paul D, Kazy SK, Gupta AK, Pal T, Sar P (2015) Diversity, metabolic properties and arsenic mobilization potential of indigenous bacteria in arsenic contaminated groundwater of West Bengal, India. PLoS One 10:e0118735. https://doi.org/10.1371/journal.pone.0118735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pepi M, Volterrani M, Renzi M, Marvasi M, Gasperini S, Franchi E, Focardi SE (2007) Arsenic resistant bacteria isolated from contaminated sediments of the Orbetello Lagoon, Italy, and their characterization. J Appl Microbiol 103:2299–2308

    Article  CAS  PubMed  Google Scholar 

  • Qamar N, Rehman Y, Hasnain S (2017) Arsenic-resistant and plant growth-promoting Firmicutes and γ-Proteobacteria species from industrially polluted irrigation water and corresponding cropland. J Appl Microbiol 123:748–758

    Article  CAS  PubMed  Google Scholar 

  • Qin J, Rosen BP, Zhang Y, Wang G, Franke S, Rensing C (2006) Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proc Natl Acad Sci 103:2075–2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman MA, Hassler C (2014) Is arsenic biotransformation a detoxification mechanism for microorganisms? Aquat Toxicol 146:212–219

    Article  CAS  PubMed  Google Scholar 

  • Rahman A, Nahar N, Nawani NN, Jass J, Desale P, Kapadnis BP, Hossain K, Saha AK, Ghosh S, Olsson B, Mandal A (2014) Isolation and characterization of a Lysinibacillus strain B1-CDA showing potential for bioremediation of arsenics from contaminated water. J Environ Sci Health A Tox Hazard Subst Environ Eng 49:1349–1360

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant associated microbes in heavy metal phytoremediation. Biotech Adv 30:1562–1574

    Article  CAS  Google Scholar 

  • Rao MA, Scelza R, Scotti R, Gianfreda L (2010) Role of enzymes in the remediation of polluted environments. J Soil Sci Plant Nutr 10:333–353

    Article  Google Scholar 

  • Rosen BP (2002) Biochemistry of arsenic detoxification. FEBS Lett 529:86–92

    Article  CAS  PubMed  Google Scholar 

  • Rosen BR, Liu ZJ (2009) Transport pathways for arsenic and selenium: a minireview. Environ Int 35:512–515

    Article  CAS  PubMed  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Paré PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkar A, Kazy SK, Sar P (2013) Characterization of arsenic resistant bacteria from arsenic rich groundwater of West Bengal, India. Ecotoxicology 22:363–376

    Article  CAS  PubMed  Google Scholar 

  • Schneider J, Stürmer SL, Guilherme LR, de Souza Moreira FM, Soares CR (2013a) Arbuscular mycorrhizal fungi in arsenic-contaminated areas in Brazil. J Hazard Mater 262:1105–1115

    Article  CAS  PubMed  Google Scholar 

  • Schneider J, Labory CR, Rangel WM, Alves E, Guilherme LR (2013b) Anatomy and ultrastructure alterations of Leucaena leucocephala (Lam.) inoculated with mycorrhizal fungi in response to arsenic-contaminated soil. J Hazard Mater 262:1245–1258

    Article  CAS  PubMed  Google Scholar 

  • Schneider J, Bundschuh J, Rangel WM, Guilherme LR (2017) Potential of different AM fungi (native from As-contaminated and uncontaminated soils) for supporting Leucaena leucocephala growth in As-contaminated soil. Environ Pollut 224:125–135

    Article  CAS  PubMed  Google Scholar 

  • Selamat SN, Abdullah SR, Idris M (2014) Phytoremediation of lead (Pb) and arsenic (As) by Melastoma malabathricum L. from contaminated soil in separate exposure. Int J Phytoremediation 16:694–703

    Article  CAS  PubMed  Google Scholar 

  • Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K, Puschenreiter M (2013) The role of plant associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem 60:182–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shagol CC, Krishnamoorthy R, Kim K, Sundaram S, Sa T (2014) Arsenic-tolerant plant-growth-promoting bacteria isolated from arsenic-polluted soils in South Korea. Environ Sci Pollut Res Int 21:9356–9365

    Article  CAS  PubMed  Google Scholar 

  • Shakya S, Pradhan B, Smith L, Shrestha J, Tuladhar S (2012) Isolation and characterization of aerobic culturable arsenic resistant bacteria from surface water and groundwater of Rautahat District, Nepal. J Environ Manag 95:250–255

    Article  CAS  Google Scholar 

  • Sharma S, Anand G, Singh N, Kapoor R (2017) Arbuscular mycorrhiza augments arsenic tolerance in wheat (Triticum aestivum L.) by strengthening antioxidant defense system and thiol metabolism. Front. Plant Sci 8:906. https://doi.org/10.3389/fpls.2017.00906

    Article  Google Scholar 

  • Sharples JM, Meharg AA, Chambers SM, Cairney JWG (2000) Mechanism of arsenate resistance in the ericoid mycorrhizal fungus Hymenoscyphus ericae. Plant Physiol 124:1327–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheik CS, Mitchell TW, Rizvi FZ, Rehman Y, Faisal M, Hasnain S, McInerney MJ, Krumholz LR (2012) Exposure of soil microbial communities to chromium and arsenic alters their diversity and structure. PLoS One 7:e40059. https://doi.org/10.1371/journal.pone.0040059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shilev S (2013) Soil rhizobacteria regulating the uptake of nutrients and undesirable elements by plants. In: Arora NK (ed) Plant microbe symbiosis: fundamentals and advances. Springer, New Delhi, pp 147–167

    Chapter  Google Scholar 

  • Silver S, Phung LT (2005) Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Appl Environ Microbiol 71:599–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh M, Srivastava PK, Verma PC, Kharwar RN, Singh N, Tripathi RD (2015) Soil fungi for mycoremediation of arsenic pollution in agriculture soils. J Appl Microbiol 119:1278–1290

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Marwa N, Mishra SK, Mishra J, Verma PC, Rathaur S, Singh N (2016) Brevundimonas diminuta mediated alleviation of arsenic toxicity and plant growth promotion in Oryza sativa L. Ecotoxicol Environ Saf 125:25–34

    Article  CAS  PubMed  Google Scholar 

  • Srivastava PK, Vaish A, Dwivedi S, Chakrabarty D, Singh N, Tripathi RD (2011) Biological removal of arsenic pollution by soil fungi. Sci Total Environ 409:2430–2442

    Article  CAS  PubMed  Google Scholar 

  • Srivastava PK, Shenoy BD, Gupta M, Vaish A, Mannan S, Singh N, Tewari SK, Tripathi RD (2012) Stimulatory effects of arsenic-tolerant soil fungi on plant growth promotion and soil properties. Microbes Environ 27:477–482

    Article  PubMed  PubMed Central  Google Scholar 

  • Srivastava S, Verma PC, Chaudhry V, Singh N, Abhilash PC, Kumar KV, Sharma N, Singh N (2013) Influence of inoculation of arsenic-resistant Staphylococcus arlettae on growth and arsenic uptake in Brassica juncea (L.) Czern. Var. R-46. J Hazard Mater 262:1039–1047

    Article  CAS  PubMed  Google Scholar 

  • Stolz JF, Basu P, Oremland RS (2002) Microbial transformation of elements: the case of arsenic and selenium. Int Microbiol 5:201–207

    Article  CAS  PubMed  Google Scholar 

  • Su S, Zeng X, Bai L, Li L, Duan R (2011) Arsenic biotransformation by arsenic-resistant fungi Trichoderma asperellum SM-12F1, Penicillium janthinellum SM-12F4, and Fusarium oxysporum CZ-8F1. Sci Total Environ 409:5057–5062

    Article  CAS  PubMed  Google Scholar 

  • Sujatha N, Ammani K (2013) Siderophore production by the isolates of fluorescent Pseudomonads. Int J Cur Res Rev 5:1–7

    Google Scholar 

  • Sun Y, Zhang X, Wu Z, Hu Y, Wu S, Chen B (2016) The molecular diversity of arbuscular mycorrhizal fungi in the arsenic mining impacted sites in Hunan Province of China. J Environ Sci 39:110–118

    Article  Google Scholar 

  • Tak HI, Ahmad F, Babalola OO (2013) Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals. Rev Environ Contam Toxicol 223:33–52

    CAS  PubMed  Google Scholar 

  • Talat M, Prakash O, Hasan SH (2009) Enzymatic detection of As(III) in aqueous solution using alginate immobilized pumpkin urease: optimization of process variables by response surface methodology. Bioresour Technol 100:4462–4467

    Article  CAS  PubMed  Google Scholar 

  • Talukdar T, Talukdar D (2013) Response of antioxidative enzymes to arsenic induced phytotoxicity in leaves of a medicinal daisy, Wedelia chinensis Merrill. J Nat Sci Biol Med 4:383–388

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tian J, Peng XW, Li X, Sun YJ, Feng HM, Jiang ZP (2014) Isolation and characterization of two bacteria with heavy metal resistance and phosphate solubilizing capability. Huan Jing Ke Xue 35:2334–2340

    PubMed  Google Scholar 

  • Tsai SL, Singh S, Chen W (2009) Arsenic metabolism by microbes in nature and the impact on arsenic remediation. Curr Opin Biotechnol 20:659–667

    Article  CAS  PubMed  Google Scholar 

  • Ullah S, Bano A (2015) Isolation of plant-growth-promoting rhizobacteria from rhizospheric soil of halophytes and their impact on maize (Zea mays L.) under induced soil salinity. Can J Microbiol 61:307–313

    Article  CAS  PubMed  Google Scholar 

  • Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq Boyce A (2016) Role of plant growth promoting rhizobacteria in agricultural sustainability-a review. Molecules 21:573. https://doi.org/10.3390/molecules21050573

    Article  CAS  PubMed Central  Google Scholar 

  • Vishnoi N, Singh DP (2014) Biotransformation of arsenic by bacterial strains mediated by oxido-reductase enzyme system. Cell Mol Biol 60:7–14

    CAS  PubMed  Google Scholar 

  • Viveros OM, Jorquera MA, Crowley DE, Gajardo G, Mora ML (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10:293–319

    Google Scholar 

  • Vu B, Chen M, Crawford RJ, Ivanova EP (2009) Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14:2535–2554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Huang Y, Li J (2011) Bacteria live on arsenic analysis of microbial arsenic metabolism- a review. Acta Microbiol Sin 51:154–160

    CAS  Google Scholar 

  • Wang Z, Luo Z, Yan C (2013) Accumulation, transformation, and release of inorganic arsenic by the freshwater cyanobacterium Microcystis aeruginosa. Environ Sci Pollut Res Int 20:7286–7295

    Article  CAS  PubMed  Google Scholar 

  • Wang PP, Bao P, Sun GX (2015) Identification and catalytic residues of the arsenite methyltransferase from a sulfate-reducing bacterium, Clostridium sp BXM. FEMS Microbiol Lett 362:1–8

    Article  CAS  PubMed  Google Scholar 

  • Wani PA, Khan MS (2013) Nickel detoxification and plant growth promotion by multi metal resistant plant growth promoting Rhizobium species RL9. Bull Environ Contam Toxicol 91:117–124

    Article  CAS  PubMed  Google Scholar 

  • Wysocki R, Bobrowicz P, Ulaszewski S (1997) The Saccharomyces cerevisiae ACR3 gene encodes a putative membrane protein involved in arsenite transport. J Biol Chem 272:30061–30066

    Article  CAS  PubMed  Google Scholar 

  • Xia YS, Chen BD, Christie P, Smith FA, Wang YS, Li XL (2007) Arsenic uptake by arbuscular mycorrhizal maize (Zea mays L.) grown in an arsenic-contaminated soil with added phosphorus. J Environ Sci 19:1245–1251

    Article  CAS  Google Scholar 

  • Xu P, Christie P, Liu Y, Zhang J, Li X (2008) The arbuscular mycorrhizal fungus Glomus mosseae can enhance arsenic tolerance in Medicago truncatula by increasing plant phosphorus status and restricting arsenate uptake. Environ Pollut 156:215–220

    Article  CAS  PubMed  Google Scholar 

  • Yuan C, Lu X, Qin J, Rosen BP, Le XC (2008) Volatile arsenic species released from Escherichia coli expressing the AsIII S-adenosylmethionine methyltransferase gene. Environ Sci Technol 42:3201–3206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Yin N, Cai X, Wang Z, Cui Y (2016) Arsenic redox transformation by Pseudomonas sp. HN2 isolated from arsenic contaminated soil in Hunan, China. J Environ Sci 47:165–173

    Article  Google Scholar 

  • Zhao FJ, Ma JF, Meharg AA, McGrath SP (2009) Arsenic uptake and metabolism in plants. New Phytol 181:777–794

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors are grateful to Science and Engineering Research Board, New Delhi; Department of Science and Technology, New Delhi; and Chhattisgarh Council of Science and Technology, Raipur, for providing financial assistance/research project to Neha Pandey, Vibhuti Chandrakar, and S. Keshavkant, respectively.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pandey, N., Chandrakar, V., Keshavkant, S. (2018). Mitigating Arsenic Toxicity in Plants: Role of Microbiota. In: Hasanuzzaman, M., Nahar, K., Fujita, M. (eds) Mechanisms of Arsenic Toxicity and Tolerance in Plants. Springer, Singapore. https://doi.org/10.1007/978-981-13-1292-2_8

Download citation

Publish with us

Policies and ethics