Skip to main content

Consequences of Paddy Cultivation in Arsenic-Contaminated Paddy Fields of Lower Indo-Gangetic Plain on Arsenic Accumulation Pattern and Selected Grain Quality Traits: A Preliminary Assessment

  • Chapter
  • First Online:

Abstract

Consequences of paddy cultivation in arsenic (As)-contaminated environment on crop growth, yield, and transmission to food chain through consumption of rice are known to all. Furthermore, the adverse consequences of As toxicity continues upon consumption of As rich rice by human, irrespective of gender and socioeconomic perspective, have been documented in large number of literature. In the current investigation, our prime objectives were to explore (a) As accumulation pattern in different rice varities cultivated in “As Hot – Spot area” located in “lower Indo – Gangetic Plane” for two successive years, and a least addressed issue (b) how rice grain quality traits get influenced by As contaminated environment. Findings from the current investigation suggest that (i) As content in irrigation water in the study sites were higher than the permissible limit mentioned by FAO; (ii) there is a season-wise, variety-wise, year-wise, as well as location-wise variation in As accumulation pattern noticed; and (iii) variation in grain quality attributes can also be seen. Results also suggest that grain As content were within the range of 0.242 ± 0.007 to 1.222 ± 0.005 mg As per kg. Statistical interpretation indicates that with fluctuation in grain As content significant modulation in grain quality traits like grain weight, head rice recovery % in downward fashion can be observed. Beside these, with variation in grain As content an increase in gel consistency, cooking time, and amylose content were also noted.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abedin MJ, Cotter-Howells J, Meharg AA (2002) Arsenic uptake and accumulation in rice (Oryza sativa L.) irrigated with contaminated water. Plant Soil 240(2):311–319

    Article  CAS  Google Scholar 

  • Acharyya SK, Shah BA (2010) Groundwater arsenic pollution affecting deltaic West Bengal, India. Curr Sci 99:1787–1794

    CAS  Google Scholar 

  • Ahmed MF, Ahuja S, Alauddin M, Hug SJ, Lloyd JR, Pfaff A, Pichler T, Saltikov C, Stute M, van Geen A (2006) Ensuring safe drinking water in Bangladesh. Science 314:1687–1688

    Article  CAS  PubMed  Google Scholar 

  • Ahsan H, Chen Y, Parvez F, Zablotska L, Argos M, Hussain I, Momotaj H, Levy D, Cheng Z, Slavkovich V et al (2006) Arsenic exposure from drinking water and risk of premalignant skin lesions in Bangladesh: baseline results from the health effects of arsenic longitudinal study. Am J Epidemiol 163:1138–1148

    Article  PubMed  Google Scholar 

  • AIREA (2014) http://www.airea.net/page/59/statistical-data/export-statistics-of-non-basmati-rice

  • Ali M (2003) Review of drilling and tubewell technology for groundwater irrigation. The University Press Limited, Dhaka

    Google Scholar 

  • Ali MA, Badruzzaman ABM, Jalil MA, Hossain MD, Ahmed MF, Masud AA (2003) Arsenic in plant-soil environment in Bangladesh. In: Ahmed MF, Ali M, Adeel Z (eds) Fate of arsenic in the environment: proceedings of the international symposium on fate of arsenic in the environment. ITN Centre, BUET, Dhaka, pp 147–159

    Google Scholar 

  • Benner S, Fendorf S (2010) Arsenic in South Asia groundwater. Geogr Compass 4:1532–1552

    Article  Google Scholar 

  • BGS/DPHE (British Geological Survey/Bangladesh Department for Public Health Engineering) (2001) Arsenic contamination of groundwater in Bangladesh. In: Kinniburgh DG, Smedley PL (eds) Final report. British Geological Survey report WC/00/19, vol 2. BGS, Keyworth

    Google Scholar 

  • Bhattacharya P, Jacks G, Frisbie SH, Smith E, Naidu R, Sarkar B (2002) Arsenic in the environment: a global perspective. In: Sarker B (ed) Handbook of heavy metals in the environment. Marcel Dekker Inc., New York, pp 147–215

    Google Scholar 

  • Bhattacharya P, Samal AC, Majumdar J, Santra SC (2010) Accumulation of arsenic and its distribution in rice plant (Oryza sativa L.) in Gangetic West Bengal, India. Paddy Water Environ 8:63–70

    Article  Google Scholar 

  • Bhattacharya P, Samal AC, Majumdar J, Banerjee S, Santra SC (2013) In vitro assessment on the impact of soil arsenic in the eight rice varieties of West Bengal, India. J Hazard Mater 262:1091–1097

    Article  CAS  PubMed  Google Scholar 

  • Biswas A, Biswas S, Santra SC (2014) Arsenic in irrigated water, soil, and rice: perspective of the cropping seasons. Paddy Water Environ 12:407–412

    Article  Google Scholar 

  • Brammer H (2008) Threat of arsenic to agriculture in India, Bangladesh and Nepal. Econ Polit Wkly 43:79–84

    Google Scholar 

  • Cagampang GB, Perez CM, Juliano BO (1973) A gel consistency test for eating quality in rice. J Sci Food Agric 24:1589–1594

    Article  CAS  PubMed  Google Scholar 

  • Calpe C (2006) Rice international commodity profile. Food and Agricultural Organization of the United Nations, Rome

    Google Scholar 

  • Carriger S, Vallée D (2007) More crop per drop. Rice Today 6:10–13

    Google Scholar 

  • Chakraborti D, Rahman MM, Das B, Murrill M, Dey S, Mukherjee SC, Dhar RK, Biswas BK, Chowdhury UK, Roy S et al (2010) Status of groundwater arsenic contamination in Bangladesh: a 14-year study report. Water Res 44:5789–5802

    Article  CAS  PubMed  Google Scholar 

  • Chang TT, Bardenas EA (1965) The morphology and varietal characteristics of the rice plant, Technical bulletin 4. International Rice Research Institute, Los Banos, pp 1–40

    Google Scholar 

  • Chowdhury MTA, Deacon CM, Jones GD, Huq SMI, Williams PN, Hoque AFMM, Winkel LHE, Price AH, Norton GJ, Meharg AA (2017) Arsenic in Bangladeshi soils related to physiographic region, paddy management, and mirco- and macro-elemental status. Sci Total Environ 590:406–415

    Article  PubMed  CAS  Google Scholar 

  • Counce PA, Bryant RJ, Bergman CJ, Bautista RC, Wang YJ, Siebenmorgen TJ, Moldenhauer KA, Meullenet JFC (2005) Rice milling quality, grain dimensions, and starch branching as affected by high night temperatures. Cereal Chem 82:645–648

    Article  CAS  Google Scholar 

  • Crawford GW, Shen C (1998) The origins of rice agriculture: recent progress in East Asia. Antiquity 72:858–866

    Article  Google Scholar 

  • Dawe D (2002) The changing structure of the world rice market, 1950–2000. Food Policy 27:355–370

    Article  Google Scholar 

  • Deaton A, Drèze J (2009) Food and nutrition in India: facts and interpretations. Econ Polit Wkly 44(7):42–65

    Google Scholar 

  • Demont M, Zossou E, Rutsaert P, Ndour M, Van Mele P, Verbeke W (2012) Consumer valuation of improved rice parboiling technologies in Benin. Food Qual Prefer 23:63–70

    Article  Google Scholar 

  • Dhaliwal YS, Nagi HPS, Sidhu GS, Sekhon KS (1986) Physicochemical, milling and cooking quality of rice as affected by sowing and transplanting dates. J Sci Food Agric 37:881–887

    Article  Google Scholar 

  • Erban LE, Gorelick SM, Zebker HA, Fendorf S (2013) Release of arsenic to deep groundwater in the Mekong Delta, Vietnam, linked to pumping-induced land subsidence. Proc Natl Acad Sci U S A 110:13751–13756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • FAO (2011) Harvested area of rough rice, by country and geographical region-FAO. IRRI. http://solutions.irri.org/index.php?option=com_content&task=view&id=250&Itemid=186

  • FAO (2014) www.faostat.fao.org

  • Food and Agricultural Organization (1985) Water quality guidelines for maximum crop production, FAO/UN 1985. Available: www.fao.org/docrep/T0551E.2006/9/13

  • FAOSTAT (2008) www.faostat.fao.org

  • Fendorf S, Michael HA, van Geen A (2010) Spatial and temporal variations of groundwater arsenic in South and Southeast Asia. Science 328:1123–1127

    Article  CAS  PubMed  Google Scholar 

  • Flanagan SV, Johnston RB, Zheng Y (2012) Arsenic in tube well water in Bangladesh: health and economic impacts and implications for arsenic mitigation. Bull World Health Organ 90:839–846

    Article  PubMed  PubMed Central  Google Scholar 

  • Fofana M, Cherif M, Kone B, Futakuchi K, Audebert A (2010) Effect of water deficit at grain ripening stage on rice grain quality. J Agric Biotechnol Sustain Dev 2:100–107

    Google Scholar 

  • Fofana M, Futakuchi K, Manful JT, Bokossa IY, Dossou J, Bleoussi RTM (2011) Rice grain quality: a comparison of imported varieties, local varieties with new varieties adopted in Benin. Food Control 2:1821–1825

    Article  Google Scholar 

  • Futakuchi K, Manful J, Salurai T (2013) Improving grain quality of locally rice. In: Proceedings of the 3rd Africa Rice Congress, Oct 21–24, Yahoundé, pp 83–89

    Google Scholar 

  • Garnier JM, Garnier J, Jézéquel D, Angeletti B (2015) Using DET and DGT probes (ferrihydrite and titanium dioxide) to investigate arsenic concentrations in soil porewater of an arsenic-contaminated paddy field in Bangladesh. Sci Total Environ 536:306–315

    Article  CAS  PubMed  Google Scholar 

  • Ghosh M, Mandal BK, Mandal BB, Lodh SB, Dash AK (2004) The effect of planting date and nitrogen management on yield and quality of aromatic rice (Oryza sativa). J Agric Sci 142:183–191

    Article  CAS  Google Scholar 

  • Ghosh D, Singh UP, Brahmachari K et al (2016) An integrated approach to weed management practices in direct-seeded rice under zero-tilled rice wheat cropping system. Int J Pest Manage 63:37–46

    Article  CAS  Google Scholar 

  • Halder D, Bhowmick S, Biswas A, Mandal U, Nriagu J, Guha Mazumdar DN, Chatterjee D, Bhattacharya P (2012) Consumption of brown rice: a potential pathway for arsenic exposure in rural Bengal. Environ Sci Technol 46:4142–4148

    Article  CAS  PubMed  Google Scholar 

  • Halick JV, Kelly VJ (1959) Gelatinization and pasting characteristics of rice varieties as related to cooking behavior. Cereal Chem J 36:91–98

    CAS  Google Scholar 

  • Harvey CF, Ashfaque KN, Yu W, Badruzzaman ABM, Ali MA, Oates PM, Michael HA, Neumann RB, Beckie R, Islam S et al (2006) Groundwater dynamics and arsenic contamination in Bangladesh. Chem Geol 228:112–136

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Hakeem KR, Öztürk M, Fujita M (2015) Arsenic toxicity in plants and possible remediation. In: Hakeem K, Sabir M, Öztürk M, Murmet A (eds) Soil remediation and plants: prospects and challenges. Elsevier, Amsterdam

    Google Scholar 

  • Heikens A (2006) Arsenic contamination of irrigation water, soil and crops in Bangladesh: risk implications for sustainable agriculture and food safety in Asia. Food and Agriculture Organization of the United Nations, Regional Office for Asia and the Pacific, Bangkok

    Google Scholar 

  • Heikens A, Panaullah GM, Meharg AA (2007) Arsenic behaviour from groundwater and soil to crops: impacts on agriculture and food safety. Rev Eviron Contam Toxicol 189:43–87

    CAS  Google Scholar 

  • Henderson S (1957) Milled rice yields. Test shows yield and quality affected by drying air temperature and humidity. Calif Agric II:6

    Google Scholar 

  • Huq SMI (2008) Fate of arsenic in irrigation water and its potential impacts on food chain. In: Ahuja S (ed) Arsenic contamination of groundwater: mechanism, analysis, and remediation. Wiley, Hoboken, pp 23–49

    Chapter  Google Scholar 

  • Huang FS, Sun ZX, Hu PS, Tang SQ. (1998) Present situations and prospects for the research on rice grain quality forming. Chin J Rice Sci 3:008

    Google Scholar 

  • IRRI (International Rice Research Institute) (2013) Rice today, vol 12. International Rice Research Institute, Metro Manila, pp 8–44

    Google Scholar 

  • Islam FS, Gault AG, Boothman C, Polya DA, Charnock JM, Chatterjee D, Lloyd JR (2004) Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature 430:68–71

    Article  CAS  PubMed  Google Scholar 

  • Jha DK (2014) New FAO norms comes as a shot in the arms of rice exporters. Business Standard. http://www.business-standard.com/article/markets/new-fao-norms-come-as-a-shot-in-the-arm-for-rice-exporters-114072601087_1.html

  • Juliano B (1971) A simplified assay for milled-rice amylose. Cereal Sci Today 16:334–340

    Google Scholar 

  • Juliano BO, Bautista GM, Lugay JC, Reyes AC (1964) Rice quality, studies on physicochemical properties of rice. J Agric Food Chem 12:131–138

    Article  CAS  Google Scholar 

  • Juliano BO, Onate LU, Del Mundo AM (1965) Relation of starch composition, protein content and gelatinization temperature to cooking and eating qualities of milled rice. Food Technol 19:1006–1011

    CAS  Google Scholar 

  • Kabata-Pendias A, Pendias H (1992) Trace element in soil and plants, 2nd edn. CRC, London

    Google Scholar 

  • Kettler TA, Doran JW, Gilbert TL (2001) Simplified method for soil particle-size determination to accompany soil-quality analyses. Soil Sci Soc Am J 65:849–852

    Article  CAS  Google Scholar 

  • Khan MA, Stroud JL, Zhu YG, McGrath SP, Zhao FJ (2010) Arsenic bioavailability to rice is elevated in Bangladeshi paddy soils. Environ Sci Technol 44:8515–8521

    Article  CAS  PubMed  Google Scholar 

  • Krishnasamy V, Seshu DV (1989) Seed germination rate and associated characters in rice. J Crop Sci 29:904–908

    Article  Google Scholar 

  • Lerche J (2011) Agrarian crisis and agrarian questions in India. J Agrar Chang 11:104–118

    Article  Google Scholar 

  • Little RR, Hilder GB, Dawson EH (1958) Differential effect of dilute alkali on 25 varieties of milled white rice. Cereal Chem 35:111–126

    CAS  Google Scholar 

  • Lu Y, Adomako EE, Solaiman ARM, Islam MR, Deacon C, Williams PN, Rahman GKMM, Meharg AA (2009) Baseline soil variation is a major factor in arsenic accumulation in Bengal Delta paddy rice. Environ Sci Technol 43:1724–1729

    Article  CAS  PubMed  Google Scholar 

  • Lyman NB, Jagadish KSV, Nalley LL, Dixon BL, Siebenmorgen T (2013) Neglecting rice milling yield and quality underestimates economic losses from high-temperature stress. PLoS One 8:e72157. https://doi.org/10.1371/journal.pone.0072157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyon BG, Champagne ET, Vinyard BT, Windham WR (2000) Sensory and instrumental relationships of texture of cooked rice from selected cultivars and postharvest handling practices. Cereal Chem 77:64–69

    Article  CAS  Google Scholar 

  • Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235

    Article  CAS  PubMed  Google Scholar 

  • Meharg AA, Raab A (2010) Getting to the bottom of arsenic standards and guidelines. Environ Sci Technol 44:4395–4399

    Article  CAS  PubMed  Google Scholar 

  • Meharg AA, Zhao FJ (2012) Arsenic & rice. Springer, Dordrecht

    Book  Google Scholar 

  • Meharg AA, Abedin MJ, Rahman MM, Feldmann, J Cotter-Howells J, Cresser MS (2001) Arsenic uptake and metabolism in Bangladesh rice varieties. In: 1st international workshop on arsenic in the Asia-Pacific region: managing arsenic for our future: book of abstracts, Adelaide, South Australia, 20–23 November, pp 45–46

    Google Scholar 

  • Minten B, Murshid KAS, Reardon T (2013) Food quality changes and implications: evidence from the rice value chain of Bangladesh. World Dev 42:100–113

    Article  Google Scholar 

  • Moazzami AA, Lampi AM, Kamal-Eldin A (2011) Bioactive lipids in cereals and cereal products. In: Hall CI, Tokuşoğlu O (eds) Fruit and cereal bioactives, sources, chemistry, and applications. CRC Press, Boca Raton, pp 229–249

    Chapter  Google Scholar 

  • Mohanty S, Wassmann R, Nelson A, Moya P, Jagadish SVK (2013) Rice and climate change: significance for food security and vulnerability. International Rice Research Institute, Los Baños

    Google Scholar 

  • Moulick D, Ghosh D, Santra SC (2016a) Evaluation of effectiveness of seed priming with selenium in rice during germination under arsenic stress. Plant Physiol Biochem 109:571–578

    Article  CAS  PubMed  Google Scholar 

  • Moulick D, Ghosh D, Santra SC (2016b) An assessment of some physicochemical properties and cooking characteristics of milled rice and associated health risk in two rice varieties of arsenic contaminated areas of West Bengal, India. Int J Res Agric Food Sci 6:44–55

    Google Scholar 

  • Moulick D, Santra SC, Ghosh D (2017) Seed priming with Se alleviate As induced phytotoxicity during germination and seedling growth by restricting As translocation in rice (Oryza sativa L. cv IET-4094). Ecotoxicol Environ Saf 145:449–456

    Article  CAS  PubMed  Google Scholar 

  • Moulick D, Santra SC, Ghosh D (2018a) Effect of selenium induced seed priming on arsenic accumulation in rice plant and subsequent transmission in human food chain. Ecotoxicol Environ Saf 152:67–77

    Article  CAS  PubMed  Google Scholar 

  • Moulick D, Santra SC, Ghosh D (2018b) Rice seed priming with se: a novel approach to mitigate as induced adverse consequences on growth, yield and as load in brown rice. J Hazard Mater 355:187–196

    Article  CAS  PubMed  Google Scholar 

  • Moulick D, Santra SC, Ghosh D (2018c) Seed priming with se mitigates as-induced phytotoxicity in rice seedlings by enhancing essential micronutrient uptake and translocation and reducing as translocation. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-018-2711-x

    Article  CAS  PubMed  Google Scholar 

  • Nordstrom DK (2002) Worldwide occurrences of arsenic in ground water. Science 296:2143–2144

    Article  CAS  PubMed  Google Scholar 

  • Panaullah GM, Alam T, Hossain MB, Loeppert RH, Lauren JG, Meisner CA, Ahmed ZU, Duxbury JM (2009) Arsenic toxicity to rice (Oryza sativa L.) in Bangladesh. Plant Soil 317:31

    Article  CAS  Google Scholar 

  • Peng S, Huang JL, Sheehy JE, Laza RC, Visperas RM, Zhong XH, Centeno GS, Khush GS, Cassman KG (2004) Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci U S A 101:9971–9975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao BS, Murthy ARV, Subrahmanya RS (1952) The amylose and the amylopectin contents of rice and their influence on the cooking quality of the cereal. Proc Indian Acad Sci Sect B 36:70–80

    Article  Google Scholar 

  • Rao PS, Mishra B, Gupta SR (2013) Effects of soil salinity and alkalinity on grain quality of tolerant, semi-tolerant and sensitive rice genotypes. Rice Sci 20:284–291

    Article  Google Scholar 

  • Ravenscroft P, Brammer H, Richards K (2009) Arsenic pollution: a global synthesis. Wiley-Blackwell, West Sussex

    Book  Google Scholar 

  • Roychowdhury T, Uchino T, Tokunaga H, Ando M (2002) Survey of arsenic in food composites from an arsenic-affected area of West Bengal, India. Food Chem Toxicol 40:1611–1621

    Article  CAS  PubMed  Google Scholar 

  • Rutsaert P, Demont M, Verbeke W (2013) 23rd Consumer preferences for rice in Africa. In: Realizing Africa’s rice promise. CABI, Wallingford, p 294

    Chapter  Google Scholar 

  • Sakurai T, Furuya K, Futakuchi K (2006) Effects of industrial amassment on the improvement of efficiency and quality. A case study for rice milers in Ghana. In: Sonobe T, Sawada Y (eds) Market and economic development. Tokyo Keizai Shinpouya, Tokyo, pp 151–179

    Google Scholar 

  • Samal AC, Kar S, Bhattacharya P, Santra SC (2011) Human exposure to arsenic through foodstuffs cultivated using arsenic contaminated groundwater in areas of West Bengal, India. J Environ Sci Health A Tox Hazard Subst Environ Eng 46:1259–1265

    Article  CAS  PubMed  Google Scholar 

  • Shrivastava A, Barla A, Yadav H, Bose S (2014) Arsenic contamination in shallow groundwater and agricultural soil of Chakdaha block, West Bengal, India. Front Environ Sci 2:50. https://doi.org/10.3389/fenvs.2014.00050

    Article  Google Scholar 

  • Shrivastava A, Barla A, Singh S, Mandraha S, Bose S (2017) Arsenic contamination in agricultural soils of Bengal deltaic region of West Bengal and its higher assimilation in monsoon rice. J Hazard Mater 324:526–534

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Sing S, Parihar P, Singh VP, Prasad SM (2015) Arsenic contamination, consequences and remediation techniques: a review. Ecotoxicol Environ Saf 112:247–470

    Article  CAS  PubMed  Google Scholar 

  • Sreenivasulu N, Butardo VM Jr, Misra G, Cuevas RP, Anacleto R, Kavi Kishor PB (2015) Designing climate-resilient rice with ideal grain quality suited for high-temperature stress. J Exp Bot 66:1737–1748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoop WA, Adam A, Kassam A (2009) Comparing rice production systems: a challenge for agronomic research and for the dissemination of knowledge-intensive farming practices. Agric Water Manag 96:1491–1501

    Article  Google Scholar 

  • Stroud JL, Norton GJ, Islam MR, Dasgupta T, White RP, Price AH, Meharg AA, McGrath SP, Zhao FJ (2011) The dynamics of arsenic in four paddy fields in the Bengal delta. Environ Pollut 159:947–953

    Article  CAS  PubMed  Google Scholar 

  • Tomlins KI, Manful JT, Larwer P, Hammond L (2005) Urban consumer preferences and sensory evaluation of locally produced and imported rice in West Africa. Food Qual Prefer 16:79–89

    Article  Google Scholar 

  • Trivedy RK, Goel PK (1986) Chemical and biological methods for water pollution studies. Environmental Publication, Karad, pp 92–107

    Google Scholar 

  • Van Geen A, Win KH, Zaw T, Naing W, Mey JL, Mailloux B (2014) Confirmation of elevated arsenic levels in groundwater of Myanmar. Sci Total Environ 478:21–24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Welch JR, Vincent JR, Auffhammer M, Moya PF, Dobermann A, Dawe DC (2010) Rice yields in tropical/subtropical Asia exhibit large but opposing sensitivities to minimum and maximum temperatures. Proc Natl Acad Sci U S A 107:14562–14567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • WHO (1992) Guideline for drinking water quality, recommendation, vol 1, 2nd edn. World Health Organization, Geneva, p 41

    Google Scholar 

  • Williams PN, Islam MR, Adomako EE, Raab A, Hossain SA, Zhu YG, Feldmann J, Meharg AA (2006) Increase in rice grain arsenic for regions of Bangladesh irrigating paddies with elevated arsenic in ground waters. Environ Sci Technol 40:4903–4908

    Article  CAS  PubMed  Google Scholar 

  • Williams PN, Villada A, Deacon C, Raab A, Figuerola J, Green AJ, Feldmann J, Meharg AA (2007) Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley. Environ Sci Technol 41:6854–6859

    Article  CAS  PubMed  Google Scholar 

  • Xie ZM, Naidu R (2006) Factors influencing bioavailability of arsenic to crops. In: Naidu R, Smith E, Qwens G, Bhattacharya P, Nadebaum P (eds) Managing arsenic in the environment: from soil to human health. CSIRO Publishing, Collingwood, pp 223–234

    Google Scholar 

  • Yadav RB, Malik S, Yadav BS (2016) Physicochemical, pasting, cooking and textural quality characteristics of some basmati and non-basmati rice varieties grown in India. Int J Agric Technol 12:675–692

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moulick, D., Santra, S.C., Ghosh, D. (2018). Consequences of Paddy Cultivation in Arsenic-Contaminated Paddy Fields of Lower Indo-Gangetic Plain on Arsenic Accumulation Pattern and Selected Grain Quality Traits: A Preliminary Assessment. In: Hasanuzzaman, M., Nahar, K., Fujita, M. (eds) Mechanisms of Arsenic Toxicity and Tolerance in Plants. Springer, Singapore. https://doi.org/10.1007/978-981-13-1292-2_3

Download citation

Publish with us

Policies and ethics