Skip to main content

Environmental Chemistry, Fate and Speciation of Arsenic in Groundwater-Soil-Crop Systems

  • Chapter
  • First Online:

Abstract

Arsenic (As) is a toxic metalloid having a natural origin in the earth’s crust. Among the several sources of As pollution, geogenic As pollution through contamination of the groundwater in the deltaic basin of Bengal (region of Ganga and Padma river) covering India and Bangladesh is of great concern to the world as it paved its way for As to adversely affect the soil-plant-animal continuum. Arsenic in soil and water is transformed chemically and biochemically through different processes, namely, oxidation, reduction, methylation, and demethylation. Regarding the fate, As mobility depends upon the clay percent and mineralogical makeup of the soil, whereas As retention is facilitated by different soil physicochemical properties, adsorption and ion exchange process, organic fraction-As complexation equilibria, surface charge characteristics, and other nutrient element interactions in soils. Precipitation-coprecipitation and microbial transformation also govern the fate of As in soil and water. After interaction with soil and water, As is further translocated or metabolized to plant body in several inorganic and organic forms. In plant body, As accumulation pattern, in general, was observed to follow the order root > stem >leaf > economic produce. Several workers attempted to derive the toxicity symptoms and values in the plant as well as man’s edibility. Finally, speciation of total loading of As for the affected soils and the crops into arsenite and arsenate oxyanion species is important for characterizing the net toxicity of As in the given soil-crop systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adak SK, Mandal BK, Sanyal SK (2002) Yield of potato as influenced by arsenic contaminated irrigation water. In: Potato, Global Research & Development, Indian Potato Research Association, Central Potato Research Institute, Shimla (ICAR). 2: 926–928

    Google Scholar 

  • Adriano MO (1986) Trace elements in the terrestrial environment. Springer, New York

    Book  Google Scholar 

  • Alscher RG (1989) Biosynthesis and antioxidant function of glutathione in plants. Physiol Plant 77:457–464

    Article  CAS  Google Scholar 

  • Andreae MO (1979) Arsenic speciation in seawater and interstitial waters: the influence of biological-chemical interactions on the chemistry of a trace element. Limnol Oceanogr 24:440–452

    Article  CAS  Google Scholar 

  • Andreae MO (1983) Biotransformation of arsenic in the marine environment. In: Lederer WH, Fensterheim RJ (eds) Arsenic: industrial, biochemical, environmental perspectives. Van Nostrand Reinhold, New York, pp 378–392

    Google Scholar 

  • Baker AJM, McGrath SP, Reeves RD et al (2000) Metal hyper-accumulator plants: A review of the ecology and physiology of a biological resource for phytoremediation of metal polluted soils. In: Terry et al (Eds.) Phytoremediation of contaminated soil and water. Lewis publishers, Boca Raton, pp 85–107

    Google Scholar 

  • Banik GC, Sanyal SK (2016) Evaluation of inorganic fractions of arsenic in relation to soil properties in affected areas of West Bengal, India. Curr Sci 111:1371–1377

    Article  CAS  Google Scholar 

  • Barry GA, Chudek PJ, Best EK et al (1995) Estimating sludge application rates to land based on heavy metal and phosphorus sorption characteristics of soil. Water Res 29:2031–2034

    Article  CAS  Google Scholar 

  • Bentley R, Chasteen TG (2002) Microbial methylation of metalloids: arsenic, antimony, and bismuth. Microbiol Mol Biol Rev 66:250–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertolero F, Pozzi G, Saffiotti U (1987) Cellular uptake and metabolic reduction of prevalent to trivalent arsenic as determinats of cytotoxicity and morphological transformation. Carcinogenesis 8:803–808

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya P, Chatterjee D, Jacks G (1997) Occurrence of arsenic-contaminated groundwater in alluvial aquifers from delta plains, eastern India: options for safe drinking water supply. Water Resour Dev 13:79–92

    Article  Google Scholar 

  • Bhattacharyya R, Jena J, Nath B et al (2003) Groundwater arsenic mobilization in the Bengal Delta Plain, the use of ferralite as a possible remedial measure- a case study. Appl Geochem 18:1435–1451

    Article  CAS  Google Scholar 

  • Bhumbla DK, Keefer RF (1994) Arsenic mobilization and bioavailability in soils. In: Nriagu JO (ed) Arsenic in the environment. Part 1: cycling and characterization. Wiley, New York, pp 51–81

    Google Scholar 

  • Bisceglia KJ, Rader KJ, Carbonaro RF et al (2005) Iron (II)-catalyzed oxidation of arsenic (III) in a sediment column. Environ Sci Technol 39:9217–9222

    Article  CAS  PubMed  Google Scholar 

  • Bissen M, Frimmel FH (2003) Arsenic — a review. Part II: oxidation of arsenic and its removal in water treatment. Acta Hydrochim Hydrobiol 31:97–107

    Article  CAS  Google Scholar 

  • Braman RS (1975) Arsenic in environment. In: Woolson EA (ed) Arsenic pesticides, ACS. Symposium Series 7. American Chemical Society, Washington, DC, pp 108–123

    Chapter  Google Scholar 

  • Brooks RR (1998) Plants that hyperaccumulate heavy metals. Cab International, New York

    Google Scholar 

  • Brown ER, Hazdra JJ, Keith L et al (1973) Frequency of fish tumours found in a polluted watershed compared to non polluted Canadian water. Cancer Res 33:189–198

    CAS  PubMed  Google Scholar 

  • Burkitbaev M (2003) Radiation-stimulated oxidation reactions of oxo anions in aqueous solutions. High Energy Chem 37:216–219

    Article  CAS  Google Scholar 

  • Carbonell-Barrachina AA, Jugsujinda A, Burlo F et al (2000) Arsenic chemistry in municipal sewage sludge as affected by redox potential and pH. Water Res 34:216–224

    Article  CAS  Google Scholar 

  • Carey PL, McLaren RG, Adams JA (1996) Sorption of cupric, dichromate and arsenate ions in some New Zealand soils. Water Air Soil Pollut 87:189–203

    Article  CAS  Google Scholar 

  • Carey AM, Scheckel KG, Lombi E et al (2010) Grain unloading of arsenic species in rice. Plant Physiol 152:309–319

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carey AM, Norton GJ, Deacon C et al (2011) Phloem transport of arsenic species from flag leaf to grain during grain filling. New Phytol 192:87–98

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carey AM, Lombi E, Donner E et al (2012) A review of recent developments in the speciation and location of arsenic and selenium in rice grain. Anal Bioanal Chem 402:3275–3286

    Article  CAS  PubMed  Google Scholar 

  • Chakravarty AK, Das DK (1997) Arsenic pollution and its environmental significance. J Inter Des 1(3):262–276

    Google Scholar 

  • Chhonkar PK (2004) Phytoremediation: a “green cure” for heavy metal contaminated soils. J Indian Soc Soil Sci 52:357–373

    CAS  Google Scholar 

  • Chigbo FE, Smith RW, Shore FI (1982) Uptake of arsenic, cadmium, lead and mercury from polluted water by the water hyacinth (Eichornia crassipes). Environ Pollut Series A 27:31–36

    Article  CAS  Google Scholar 

  • Chowdhury UK, Rahaman MM, Mondal BK et al (2001) Groundwater contamination and human suffering in West Bengal, India and Bangladesh. Environ Sci 8:393–415

    CAS  Google Scholar 

  • Clifford DA, Ghurye GL (2002) Metal-oxide adsorption, ion exchange, and coagulation-microfiltration for arsenic removal from water. In: Frankenberger WT Jr (ed) Environmental chemistry of arsenic. Marcel Dekker, New York, pp 217–245

    Google Scholar 

  • Cotton FA, Wilkinson G, Murillo CA et al (1999) Advanced inorganic chemistry. Wiley, New York

    Google Scholar 

  • Craig PJ, Eng G, Jenkins RO (2003) Occurrence and pathways of organometallic compounds in the environment — general considerations. In: Craig PJ (ed) Organometallic compounds in the environment, 2nd edn. Wiley, West Sussex, pp 1–55

    Chapter  Google Scholar 

  • Cullen WR, Hettipathirana DL (1994) Application of whole cell NMR techniques to study the interaction of arsenic compounds with Catharanthus roseus cell suspension cultures. Appl Organomet Chem 8:463–471

    Article  CAS  Google Scholar 

  • Cullen WR, Reimer KJ (1989) Arsenic speciation in the environment. Chem Rev 89:713–764

    Article  CAS  Google Scholar 

  • D’Amato N, Forte G, Caroli S (2004) Identification and quantification of major species of arsenic in rice. J AOAC Int 87:238–243

    PubMed  Google Scholar 

  • Das DK, Garai TK, Sarkar S et al (2005a) Interaction of arsenic with zinc and organics in a rice cultivated field in India. Sci World J 5:646–651

    Article  CAS  Google Scholar 

  • Das I, Ghosh K, Sanyal SK (2005b) Phytoremediation: a potential option to mitigate arsenic contamination in soil-water-plant system. Everyman’s Sci, Indian Sci Congr Assoc 40:115–123

    Google Scholar 

  • Das I, Ghosh K, Das DK et al (2011) Studies on fractionation of arsenic in soil in relation to crop uptake. Soil Sediment Contam: An Int J 20:790–809

    Article  CAS  Google Scholar 

  • Das I, Ghosh K, Das DK et al (2013) Assessment of arsenic toxicity in rice plants in areas of West Bengal. Chem Speciat Bioavail 25:201–208

    Article  CAS  Google Scholar 

  • Das I, Ghosh K, Das DK et al (2014) Transport of arsenic in some affected soils of Indian sub-tropics. Soil Res 52(8):822–832

    Article  CAS  Google Scholar 

  • Das I, Sanyal SK, Ghosh K et al (2015) Implications of soil clay minerals on the availability and speciation of inorganic arsenic in soil-crop pathways in selected arsenic affected soils of West Bengal. Clay Res 34:66–79

    Google Scholar 

  • Das I, Sanyal SK, Ghosh K, Das DK (2016) Arsenic mitigation in soil-plant system through zinc application in West Bengal soils. Biorem J 20:24–37

    Article  CAS  Google Scholar 

  • Datta SP, Young SD (2005) Predicting metal uptake and risk to the human food chain from leaf vegetables grown on soils amended by long-term application of sewage-sludge. Water Air Soil Pollut 163:119–136

    Article  CAS  Google Scholar 

  • Datta A, Sanyal SK, Saha S (2001) A study on natural and synthetic humic acids and their complexing ability towards cadmium. Plant Soil 225:115–125

    Article  Google Scholar 

  • De Koe T, Jaques NMM (1993) Arsenate tolerance in Agrostis castellana and Agrostis delicatula. Plant Soil 151:185–191

    Article  CAS  Google Scholar 

  • Delnomededieu M, Basti MM, Otvos JD et al (1994) Reduction and binding of arsenate and dimethylarsenate by glutathione-a magnetic-resonance study. Chem-Biol Interact 90:139–155

    Article  Google Scholar 

  • Deuel LE, Swoboda AR (1972) Arsenic toxicity to cotton and soybeans. J Environ Qual 1:317–320

    Article  CAS  Google Scholar 

  • Devenport JR, Peryea FJ (1991) Phosphate fertilizers influence leaching of lead and arsenic in a soil contaminated with lead arsenate. Water Air Soil Pollut 57:101–110

    Article  Google Scholar 

  • Dickens R, Hiltbold AE (1967) Movement and persistence of methanearsonates in soil. Weeds 15:299–304

    Article  CAS  Google Scholar 

  • Dombrowski PM, Long W, Farley KJ et al (2005) Thermodynamic analysis of arsenic methylation. Environ Sci Technol 39:2169–2176

    Article  CAS  PubMed  Google Scholar 

  • Douglas TH, Nohora PV, Kristen RS et al (2001) Determination of total and speciated arsenic in rice by ion chromatography and ICP-MS. J Anal At Spectrom 16:299–306

    Article  Google Scholar 

  • Duxbery JM, Mayer AB, Lauren JG et al (2003) Food chain aspects of arsenic contamination in Bangladesh effects on quality and productivity of rice. J Environ Sci Health Part A Tox. Hazard Subst Environ Eng 38:9–61

    Google Scholar 

  • Edvantoro BB, Naidu R, Megharaj M et al (2004) Microbial formation of volatile arsenic in cattle dip site soils contaminated with arsenic and DDT. Appl Soil Ecol 25:207–217

    Article  Google Scholar 

  • Emsley J (2001) Nature’s building blocks: an A-Z guide toelements. Oxford University Press, Oxford, pp 513–529

    Google Scholar 

  • Evangelou VP, Seta AK, Holt A (1998) Potential role of bicarbonate during pyrite oxidation. Environ Sci Technol 32:2084–2091

    Article  CAS  Google Scholar 

  • Faust SD, Winka AJ, Belton T (1987) An assessment of chemical and biological significance of arsenical species in the Maurice River drainage basin (N.J.). Part I. Distribution in water and river and lake sediments. J Environ Sci Health A 22:209–237

    Google Scholar 

  • Feinglass EJ (1973) Arsenic intoxication from well water in the United States. New Engl J Med 288:828–830

    Article  CAS  PubMed  Google Scholar 

  • Fergusen JF, Gavis J (1972) A review of the arsenic cycle in natural waters. Water Res 6:1259–1274

    Article  Google Scholar 

  • Fleischer M (1983) Glossary of mineral species. The Mineralogical Record Inc, Tucson, p 202

    Google Scholar 

  • Frankenberger WTJ, Arshad M (2002) Volatilization of arsenic. In: Frankenberger WT Jr (ed) Environmental chemistry of arsenic. Marcel Dekker, New York, pp 363–380

    Google Scholar 

  • Frohne T, Rinklebe J, Diaz-Bone RA et al (2011) Controlled variation of redox conditions in a floodplain soil: impact on metal mobilization and biomethylation of arsenic and antimony. Geoderma 160:414–424

    Article  CAS  Google Scholar 

  • Galba J (1972) Desorption of arsenates from soil by water. (in Slovakian) Pol ‘nohospodarstvo 18:945–952

    Google Scholar 

  • Galba J, Polacek S (1973) Sorption of arsenates under kinetic conditions in selected soil types. Acta Fytotech 28:187–197

    CAS  Google Scholar 

  • Gao Y, Mucci A (2001) Acid base reaction, phosphate and arsenate complexation, and their competitive adsorption at the surface of goethite in 0.7M NaCl solution. Geochim Cosmochim Acta 65:2361–2378

    Article  CAS  Google Scholar 

  • Garai TK, Das DK, Sarkar S (2000) Effect of iron and zinc application on the availability of native and applied arsenic simulating lowland rice condition. Proc. Intl. Conf. On Managing Natl. Resources for Sustainable Agricultural Production in the 21st Century, New Delhi, February 14–18, 2000. Extended Summaries, Vol. 2. p. 306

    Google Scholar 

  • Geiszinger A (1998) Asenmetabolism; Terrestr. Oligochaeten U. Martin. Polychaeton. Dissertation, Institute for Analytical Chemistry, Karl-Franzens-University, Graz, Austria

    Google Scholar 

  • Ghosh K (2006) A study on arsenic dynamics in soil-crop system in selected arsenic affected soils of West Bengal along with potential mitigation options. Ph.D. Dissertation, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal

    Google Scholar 

  • Ghosh K, Schnitzer M (1980) Macromolecular structures of humic substances. Soil Sci 129:226–276

    Article  Google Scholar 

  • Ghosh AK, Sarkar D, Sanyal SK et al (2002) Status and distribution of arsenic in alluvium derived soils of West Bengal and their interrelationship with some soil properties. J Indian Soc Soil Sci 50:51–56

    CAS  Google Scholar 

  • Ghosh K, Das I, Das DK et al (2003) Crop uptake, retention and release behaviour of arsenic in some arsenic contaminated soils of Bengal-delta basin. In: National Seminar on Developments in Soil Science : 2003, 68th Annual Convention of the Indian Society of Soil Science (ISSS), held at the Chandra Sekhar Azad University of Agriculture And Technology, Kanpur on November 4 – 8, 2003. Abstract, pp 34–35

    Google Scholar 

  • Ghosh K, Das I, Saha S et al (2004) Arsenic chemistry in groundwater in the Bengal-delta plain: implications in agricultural system. J Indian Chem Soc 81:1063–1072

    CAS  Google Scholar 

  • Ghosh K, Das I, Das DK et al (2012) Evaluation of humic and fulvic acid extracts of compost, oilcake, and soils on complex formation with arsenic. Soil Res 50:239–248

    Article  CAS  Google Scholar 

  • Goldberg S (1986) Chemical modeling of arsenate adsorption of aluminum and iron oxide minerals. Soil Sci Soc Am J 50:1154–1157

    Article  CAS  Google Scholar 

  • Goldberg S (2002) Competitive adsorption of arsenate and arsenite on oxides and clay minerals. Soil Sci Soc Am J 66:413–421

    Article  CAS  Google Scholar 

  • Goldberg S, Glaubig RA (1988) Anion sorption on a calcareous, montmorillonitic soil – arsenic. Soil Sci Soc Am J 52:1297–1300

    Article  CAS  Google Scholar 

  • Golui D, Guha Mazumder DN, Sanyal SK et al (2017) Safe limit of arsenic in soil in relation to dietary exposure of arsenicosis patients from Malda district, West Bengal- a case study. Ecotoxicol Environ Saf 144:227–235

    Article  CAS  PubMed  Google Scholar 

  • Grafe M, Eick MJ, Grossl PR (2001) Adsorption of arsenate (V) and arsenite (III) on goethite in the presence and absence of dissolved organic carbon. Soil Sci Soc Am J 65:1680–1687

    Article  CAS  Google Scholar 

  • Grimmett RER, McIntosh IG (1939) Overcome of as in soils and waters in Waiotapu valley, and its relation to stock health. NZJ Sci Tech Agric Sect 22:137–145

    Google Scholar 

  • Grossl PR, Eick M, Sparks DL et al (1997) Arsenate and chromate retention mechanisms on goethite. 2. Kinetic evaluation using a pressure-jump relaxation technique. Environ Sci Technol 31:321–326

    Article  CAS  Google Scholar 

  • Gustafsson JP (2001) Modelling competitive anion adsorption on oxide minerals and an allophane-containing soil. Eur J Soil Sci 52:639–653

    Article  CAS  Google Scholar 

  • Hartley-Whitaker J, Ainsworth G, Meharg AA (2001a) Copper and arsenate induced oxidative stress in Holcus lanatus L. clones with differential sensitivity. Plant Cell Environ 24:713–722

    Article  CAS  Google Scholar 

  • Hartley-Whitaker J, Ainsworth G et al (2001b) Phtochelatins are involved in different arsenic tolerance in Holcus lanatus L. Plant Physiol 126:299–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haswell SJ, O'Neill P, Bancroft KC (1985) Arsenic speciation in soil-pore waters from mineralized and unmineralized areas of south-West England. Talanta 32:69–72

    Article  CAS  PubMed  Google Scholar 

  • Henke K (ed) (2009) Arsenic: environmental chemistry, health threats and waste treatment. Wiley, London

    Google Scholar 

  • Henke KR, Hutchison A (2009) Arsenic chemistry. In: Henke K (ed) Arsenic: environmental chemistry, health threats and waste treatment. Wiley, London, pp 9–68

    Chapter  Google Scholar 

  • Hering JG, Kneebone PE (2002) Biogeochemical controls on arsenic occurrence and mobility in water supplies. In: WTJ F (ed) Environmental chemistry of arsenic. Marcel Dekker, New York, pp 155–181

    Google Scholar 

  • Hingston FJ (1981) A review of anion adsorption. Adsorption of inorganics at solid-liquid. Interfaces:51–90

    Google Scholar 

  • Hingston FJ, Posner AM, Quirk JP (1974) Anion adsorption by goethite and gibbsite. II. Desorption of anions from hydrous oxide surfaces. J Soil Sci 25:16–26

    Article  CAS  Google Scholar 

  • Holm TR (2002) Effects of CO3 2−- /bicarbonate, Si, and PO4 3 - on arsenic sorption to HFO. J Am Water Works Assoc 94:174–181

    Article  CAS  Google Scholar 

  • Hough RL, Young SD, Crout NMJ, Tye AM (2004) Assessing potential risk of heavy metal exposure from consumption of home produced vegetable by urban populations. Environ Health Perspectives 112:215–221

    Article  CAS  Google Scholar 

  • HSDB (2001) Hazardous substances data base. National Library of Medicine. http://toxnet.nlm. nih.gov/cgi-bin/sis/htmlgen. HSDB

  • Huang J-H, Scherr F, Matzner E (2007) Demethylation of dimethylarsinic acid and arsenobetaine in different organic soils. Water Air Soil Pollut 182:31–41

    Article  CAS  Google Scholar 

  • ICAR (2001) Final Report: Status, causes and impacts of arsenic contamination in groundwater in parts of West Bengal vis-à-vis management of agricultural systems. [Adhoc scheme executed (1998–2001) by Bidhan Chandra Krishi Viswavidyalaya (Nodal Centre); NBSS & LUP Regional Centre, Kolkata; NDRI, Kalyani; GSI, Govt. of India, Kolkata; CSSRI, Regional Research Station, Canning Town; SWID, Govt. of West Bengal, Kolkata; Principal Investigator – Sanyal SK]

    Google Scholar 

  • Jackson BP, Miller WP (2000) Effectiveness of phosphate and hydroxide for desorption of arsenic and selenium species from iron oxides. Soil Sci Soc Am J 64:1616–1622

    Article  CAS  Google Scholar 

  • Jacobs LW, Syers JK, Keeney DR (1970) Arsenic sorption by soils. Soil Sci Soc Am Proc 34:750–754

    Article  CAS  Google Scholar 

  • Jia Y, Huang H, Zhong M et al (2013) Microbial arsenic methylation in soil and rice rhizosphere. Environ Sci Technol 47:3141–3148

    Article  CAS  PubMed  Google Scholar 

  • Johnson DL (1972) Bacterial reduction of arsenate in sea water. Nature 240:44–45

    Article  CAS  PubMed  Google Scholar 

  • Jopony M, Young SD (1994) The solid solution equilibria of lead and cadmium in polluted soils. Eur J Soil Sci 45:59–70

    Article  CAS  Google Scholar 

  • Jyothsna P, Murthy SDS (2016) A review on bioremediation of arsenic from contaminated groundwater. Octa J Environ Res 4:155–166

    CAS  Google Scholar 

  • Koch I, Fieldmann J, Wang LX et al (1999) Arsenic in Meager Creek hot springs environment, British Columbia, Canada. Sci Total Environ 236:101–107

    Article  CAS  PubMed  Google Scholar 

  • Koch I, Wang LX, Ollson CA et al (2000) The predominance of inorganic arsenic species in plants from Yellowknife, Northwest Territories, Canada. Sci Total Environ 34:22–26

    Article  CAS  Google Scholar 

  • Korte NE, Fernando Q (1991) A review of arsenic (III) in groundwater. CRC Critical Rev Environ Control 21:1–39

    Article  CAS  Google Scholar 

  • Kuo S, McNeal BL (1984) Effects of pH and phosphate on cadmium sorption by a hydrous ferric oxide. Soil Sci Am J 48:1040–1044

    Article  CAS  Google Scholar 

  • Lafferty BJ, Loeppert RH (2005) Methyl arsenic adsorption and desorption behavior on iron oxides. Environ Sci Technol 39:2120–2127

    Article  CAS  PubMed  Google Scholar 

  • Lanchester RJ, Coup MR, Huges JW (1971) Toxicity of arsenic present in Lakeweed. N Z Vet J 19:141–1451

    Google Scholar 

  • Langner HW, Jackson CR, Mcdermott TR et al (2001) Rapid oxidation of arsenite in a hot spring ecosystem, Yellowstone National Park. Environ Sci Technol 35:3302–3309

    Article  CAS  PubMed  Google Scholar 

  • Lee CK, Low KS, Hew NS (1991) Accumulation of arsenic by aquatic plants. Sci Total Environ 103:215–227

    Article  CAS  Google Scholar 

  • Lehr CR, Polishchuk E, Radoja U et al (2003) Demethylation of methylarsenic species by Mycobacterium neoaurum. Appl Organomet Chem 17:831–834

    Article  CAS  Google Scholar 

  • Lengke MF, Tempel RN (2002) Reaction rates of natural orpiment oxidation at 25 to 40°C and pH 6.8 to 8.2 and comparison with amorphous As2S3 oxidation. Geochim Cosmochim Acta 66:3281–3291

    Google Scholar 

  • Livesey NT, Huang PM (1981) Adsorption of arsenate by soil and its relation to selected chemical properties and anions. Soil Sci 131:88–94

    Article  CAS  Google Scholar 

  • Lloyd JR, Oremland RS (2006) Microbial transformations of arsenic in the environment: from soda lakes to aquifers. Elements 2(2):85–90

    Article  CAS  Google Scholar 

  • Low KS, Lee CK (1990) The removal of cationic dyes using coconut husk as an adsorbent. Pertanika 13:129–135

    CAS  Google Scholar 

  • Ma LQ, Komar KM, Tu C et al (2001) A fern that hyperaccumulates arsenic. Nature 409:579. https://doi.org/10.1038/35054664

    Article  CAS  PubMed  Google Scholar 

  • Macalady D, Ahmann, D (2002) A project work on “Redox, transformation, complexation and soil sediment interactions of Inorganic Forms of Arsenic and Selenium in Aquatic Environments, effect of natural organic matter” Colorado school of Mines

    Google Scholar 

  • Machlis L (1941) Accumulation of arsenic in shoots of sudangrass and bushbean. Plant Physiol 16:521–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majumdar K, Sanyal SK (2003) pH-dependent arsenic sorption in an Alfisol and an Entisol of West Bengal. Agropedology 13:25–29

    Google Scholar 

  • Mandal BK, Chowdhury TR, Samanta G et al (1996) Arsenic in groundwater in seven districts of West Bengal, India – the biggest arsenic calamity in the world. Curr Sci 70:976–986

    CAS  Google Scholar 

  • Manful GA, Verloo M, Spiegeleer F de (1989) Arsenate sorption by soils in relation to pH and selected anions. Pédologie 39:55–68

    Google Scholar 

  • Manning BA, Goldberg S (1996) Modeling competitive adsorption of arsenate with phosphate and molybdate on oxide minerals. Soil Sci Soc Am J 60:121–131

    Article  CAS  Google Scholar 

  • Manning BA, Goldberg S (1997) Arsenic (III) and arsenic (V) adsorption on three California soils. Soil Sci 162:886–895

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London

    Google Scholar 

  • Martin AR, Masscheleyn PH, Patric WH (1992) The influence of chemical form and concentration of arsenic on rice growth and tissue arsenic concentration. Plant and Soil 1(39):175–183

    Article  Google Scholar 

  • Martin AR, Masscheleyn PH, Patric WH (1993) Soil redox-pH stability of arsenic species and its influence on arsenic uptake by rice. Plant Soil 152:245–253

    Article  Google Scholar 

  • Masscheleyn PH, Delaune RD, Patrick WH Jr (1991) Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environ Sci Technol 25:1414–1419

    Article  CAS  Google Scholar 

  • Mazumdar A, Bhattacharyya K, Kole SC et al (2013a) Efficacy of indigenous soil microbes in arsenic mitigation from contaminated alluvial soil of India. Environ Sci Pollut Res Int 20:5645–5653

    Article  CAS  Google Scholar 

  • Mazumdar A, Bhattacharyya K, Bhattacharyya S et al (2013b) Arsenic tolerant, arsenic-oxidising bacterial strains in the contaminated soils of West Bengal. Sci Total Environ 463:1006–1014

    Google Scholar 

  • McLaughlin MJ, Parker DR, Clarke JM et al (1999) Sustainable field crop systems for enhancing human health: agricultural approaches to balanced micronutrient nutrition. Field Crop Res 60:143–163

    Article  Google Scholar 

  • McNeill LS, Chen H, Edwards M (2002) Aspects of arsenic chemistry in relation to occurrence, health and treatment. In: Frankenberger WTJ (ed) Environmental chemistry of arsenic. Marcel Dekker, New York, pp 141–153

    Google Scholar 

  • Meena R, Datta SP, Golui D et al (2016) Long-term impact of sewage irrigation on soil properties and assessing risk in relation to transfer of metals to human food chain. Environ Sci Pollut Res 23:14269–14283

    Article  CAS  Google Scholar 

  • Meharg AA (1994) Integrated tolerance mechanisms-constitutive and adaptive plant-responses to elevated metal concentrations in the environment. Plant Cell Environ 17:989–993

    Article  CAS  Google Scholar 

  • Meharg AA, Hartley- Whitaker J (2002) Arsenic uptake and metabolism inarsenic resistant and nonresistant plant species. New Phytol 154:29–43

    Article  CAS  Google Scholar 

  • Meharg AA, Zhao FJ (2012) Arsenic & Rice. Springer, Dordrecht

    Book  Google Scholar 

  • Melamed R, Jurinak JJ, Dudley LM (1995) Effect of adsorbed phosphate on transport of arsenate through an Oxisol. Soil Sci Soc Am J 59:1289–1294

    Article  CAS  Google Scholar 

  • Mestrot A, Feldmann J, Eva M et al (2011) Field fluxes and speciation of arsines emanating from soils. Environ Sci Technol 45:1798–1804

    Article  CAS  PubMed  Google Scholar 

  • Mestrot A, Xie WY, Xue X et al (2013) Arsenic volatilization in model anaerobic biogas digesters. Appl Geochem 33:294–297

    Article  CAS  Google Scholar 

  • Mohapatra D, Mishra D, Roy Choudhury G et al (2007) Arsenic adsorption mechanism on clay minerals and its dependence on temperature. Korean J Chem Eng 24:426–430

    Article  CAS  Google Scholar 

  • Mok WM, Wai CM (1994) Mobilization of arsenic in contaminated river waters. In: Nriagu JO (ed) Arsenic in the environment: Part I: cycling and characterization. Wiley, New York, pp 99–117

    Google Scholar 

  • Moreno-Jiménez E, Esteban E, Peñalosa JM (2012) The fate of arsenic in soil-plant systems. In: Whitacre DM (ed) Reviews of environmental contamination toxicology. Springer, New York, pp 1–37

    Google Scholar 

  • Mukhopadhyay D (2002) A study on arsenic mobilization, retention and interactions with organics in soils. Ph. D. thesis. Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal

    Google Scholar 

  • Mukhopadhyay D, Sanyal SK (2002) Studies on arsenic transport across and down some soils of West Bengal. J Indian Soc Soil Sci 50:456–463

    Google Scholar 

  • Mukhopadhyay D, Sanyal SK (2004) Complexation and release isotherm of arsenic in arsenic-humic/fulvic equilibrium study. Aust J Soil Res 42:815–824

    Article  CAS  Google Scholar 

  • Mukhopadhyay D, Mani PK, Sanyal SK (2002) Effect of phosphorus, arsenic and farmyard manure on arsenic availability in some soils of West Bengal. J Indian Soc Soil Sci 50:56–61

    CAS  Google Scholar 

  • Mukhopadhyay R, Shi J, Rosen BP (2000) Purification and characterization of ACR2p, the Saccharomyces cerevisiae arsenate reductase. J Biol Chem 275:21149–21157

    Article  CAS  PubMed  Google Scholar 

  • Naidu R, Smith J, McLaren RJ, Stevens DP, Sumner ME, Jackson PE (2000) Application of capillary electrophoresis to anion speciation in soil water extracts II. Arsenic J Soil Sci Soc Am 64:122

    Article  CAS  Google Scholar 

  • Nickson R, McArthur J, Burges W et al (1998) Arsenic poisoning of Bangladesh groundwater. Nature 395:338. https://doi.org/10.1038/26387

    Article  CAS  PubMed  Google Scholar 

  • Nissen P, Benson AA (1982) Arsenic metabolism in freshwater and terrestrial plants. Physiol Plant 54:446–450

    Article  CAS  Google Scholar 

  • Nriagu JO (1988) A salient epidemic of environmental poisoning. Environ Pollut 50:139–161

    Article  CAS  PubMed  Google Scholar 

  • Nriagu JO (2002) Arsenic poisoning through the ages. In: Frankenberger WTJ (ed) Environmental chemistry of arsenic. Marcel Dekker, New York, pp 1–26

    Google Scholar 

  • O’Reilly SE, Strawn DG, Sparks D (2001) Residence time effects on arsenate adsorption/desorption mechanisms on goethite. Soil Sci Soc Am J 65:67–77

    Article  Google Scholar 

  • Onken BM, Hossner LR (1996) Determination of arsenic species in soil solution under flooded conditions. Soil Sci Soc Am J 60:1385–1392

    Article  CAS  Google Scholar 

  • Oscarson DW, Huang PM, Liaw WK (1981) Role of manganese in the oxidation of arsenite by freshwater lake sediments. Clays Clay Miner 29:219–225

    Article  CAS  Google Scholar 

  • Panda S, Das NC (2001) Impact of cultivation of pointed gourd (Trichosanthes dioica) on mobilization of arsenic in surface soil and water-A report Proc Int Conf on Changing Environmental Scenario of India and Adjacent Countries since Independence, Calcutta, December 29, 2000 – January 01, 2001. Abstracts, p 107

    Google Scholar 

  • Persson P, Nilsson N, Sjoberg S (1996) Structure and bonding of orthophosphate ions at the iron oxide–aqueous interface. J Colloid Interface Sci 177:263–275

    Article  CAS  PubMed  Google Scholar 

  • Peryea FJ (1991) Phosphate-induced release of arsenic from soils contaminated with lead arsenate. Soil Sci Soc Am J 55:1301–1306

    Article  CAS  Google Scholar 

  • Pickering IJ, Prince RC, George MJ et al (2000) Reduction and coordination of arsenic in Indian mustard. Plant Physiol 122:1171–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pongratz R (1998) Arsenic speciation in environmental samples of contaminated soil. Sci Total Environ 224:133–141

    Article  CAS  Google Scholar 

  • Price RE, Pichler T (2005) Distribution, speciation and bioavailability of arsenic in a shallow-water submarine hydrothermal system, Tutum Bay, Ambitle Island, PNG. Chem Geol 224:122–135

    Article  CAS  Google Scholar 

  • Redman AD, Macalady DL, Ahmann D (2002) Natural organic matter affects arsenic speciation and sorption onto hematite. Environ Sci Technol 36:2889–2896

    Article  CAS  PubMed  Google Scholar 

  • Reynolds JG, Naylor DV, Fendrof SE (1999) A arsenic sorption in phosphate-amended soils during flooding and subsequent aeration. Soil Sci Soc Am J 63:1149–1156

    Article  CAS  Google Scholar 

  • Rio M-d, Fong R, Fernandez-Martinez J, Dominguez J, ADe H, del-Rio M, de-Haro A (2000) Field trials of Brassica carinata and Brassica juncea in polluted soils of the Guadiamar river area. FreseniusEnviron Bull 9:328–332

    Google Scholar 

  • Rosen B, Liu Z (2009) Transport pathways for arsenic and selenium: a mini review. Environ Int 35:512–515

    Article  CAS  PubMed  Google Scholar 

  • Roy WR, Hassett JJ, Griffin RA (1986) Competitive coefficients for the adsorption of arsenate, molybdate and phosphate mixtures by soils. Soil Sci Soc Am J 50:1176–1181

    Article  CAS  Google Scholar 

  • Sadiq M (1997) Arsenic chemistry in soils: an overview of thermodynamic predictions and field observations. Water Air Soil Pollut 93:117–136

    CAS  Google Scholar 

  • Sadiq M, Zaida TH, Mian AA (1983) Environmental behaviour of arsenic in soils: theoretical. Water Air Soil Pollut 93:117–136

    Google Scholar 

  • Saha S, Sanyal SK (2005) Transport of aqueous arsenic in selected arsenic affected soils of West Bengal: a miscible displacement study. J Indian Chem Soc 82:100–107

    CAS  Google Scholar 

  • Saha S, Ghosh K, Das I, Sanyal SK (2005) Distribution of different inorganic forms of arsenic in selected arsenic affected soils of the Bengal-delta basin. J Indian Chem Soc 82:364–367

    CAS  Google Scholar 

  • Sanyal SK (1984) Structure of water insolution of organics-Hydrophobic hydration. Chem Edu 1:14–18

    Google Scholar 

  • Sanyal SK (1999) Chemodynamics of geogenic contaminants in the soil environment-Arsenic.Proc. Second Intl. Conf. on Contaminants in the Soil Environment in the Australasia-Pacific Region, New Delhi, December 12–17, 1999. Extended Abstracts, p. 389–390. Indian Network for Soil Contamination Research, New Delhi, India and Soil Contamination Research in Asia and the Pacific, Adelaide, Australia

    Google Scholar 

  • Sanyal SK (2000) Arsenic dynamics in groundwater-soil-plant system. SATSA Mukhapatra – Annual Technical Issue 4:41–69

    Google Scholar 

  • Sanyal SK (2002) Colloid chemical properties of soil humic substances: a relook. Bull Indian Soc Soil Sci., New Delhi 21:537–569

    Google Scholar 

  • Sanyal, SK (2005) Arsenic contamination in agriculture: A threat to water-soil-crop-animal-human continuum. Presidential Address, Section of Agriculture &Forestry Sciences, 92nd Session of the Indian Science Congress Association (ISCA), Ahmedabad, January 3–7, 2005; Indian Science Congress Association Kolkata

    Google Scholar 

  • Sanyal SK (2016) Arsenic toxicity in plants, animals and humans and its alleviation strategies. Indian J Fert 12:74–83

    Google Scholar 

  • Sanyal SK (2017) Environmental soil chemistry: soil pollution-environmental impact and amelioration. In: A text book of soil chemistry. Astral International Private Limited, New Delhi, pp 240–253

    Google Scholar 

  • Sanyal SK, De Datta SK (1991) Chemistry of phosphorus transformations in soil. Adv Soil Sci 16:1–120

    Article  CAS  Google Scholar 

  • Sanyal SK, Dhillon KS (2005) Arsenic and selenium dynamics in water- soil -plant system: a threat to environmental quality. In: Proceedings of the International Conference on Soil, Water and Environmental Quality: Issues and Strategies, held in New Delhi, India during January 28 to February 1, 2005

    Google Scholar 

  • Sanyal SK, Nasar SKT (2002) Arsenic contamination of groundwater in West Bengal (India): build-up in soil-crop systems. In: Analysis and practice in water resources engineering for disaster mitigation. New Age International (P) Limited, Publishers, New Delhi, pp 216–222

    Google Scholar 

  • Sanyal SK, De Datta SK, Chan PY (1993) Phosphate sorption-desorption behaviour of some acidic soils of south and South-East Asia. Soil Sci Soc Am J 57:937–945

    Article  CAS  Google Scholar 

  • Sanyal SK, Jeevan Rao K and Sadana US (2012) Toxic elements and other pollutants- a threat to nutritional quality. In: Goswami NN et al (eds.) Soil Science in the Service of Nation, Indian Society of Soil Science, New Delhi, pp 266–291

    Google Scholar 

  • Sanyal SK, Gupta SK, Kukal SS et al (2015) Soil degradation, pollution and amelioration. In: Pathak H, Sanyal SK, Takkar PN (eds) State of Indian agriculture-soil. National Academy of Agricultural Sciences, New Delhi, pp 234–266

    Google Scholar 

  • Sakamoto A, Murata N (2000) Genetic engineering of glycinebetaine synthesis in plants: current status and implications for enhancement of stress tolerance. J Exp Bot 51:81–88

    Article  CAS  PubMed  Google Scholar 

  • Santosa SJ, Mokudai H, Takahashi M et al (1996) The distribution of arsenic compounds in the ocean: biological activity in the surface zone and removal processes in the deep zone. Appl Organomet Chem 10:697–705

    Article  CAS  Google Scholar 

  • Savage KS, Bird DK, Ashley RP (2000) Legacy of the California gold rush: environmental geochemistry of arsenic in the southern Mother Lode Gold District. Intl Geol Rev 42(5):385–415

    Article  Google Scholar 

  • Savage KS, Bird DK, O’Day PA (2005) Arsenic speciation in synthetic jarosite. Chem Geol 215(1–4):473–498

    Article  CAS  Google Scholar 

  • Schreiber ME, Gotkowitz MB, Simo JA et al (2003) Mechanisms of arsenic release to water from naturally occurring sources, eastern Wisconsin. In: Welch AH, Stollenwerk KG (eds) Arsenic in ground water. Kluwer Academic Publishers, Boston, pp 259–280

    Chapter  Google Scholar 

  • Shih MC (2005) An overview of arsenic removal by pressure-driven membrane processes. Desalination 172:85–97

    Article  CAS  Google Scholar 

  • Sinha Ray SP (1997) Arsenic in groundwater in West Bengal.Consultation on arsenic in drinking water and resulting arsenic toxicity in India and Bangladesh. World Health Organisation, New Delhi 29 April to 01 May, 1997

    Google Scholar 

  • Smith SD, Edwards M (2005) The influence of silica and calcium on arsenate sorption to oxide surfaces. J Water Supply ResT – AQUA 54:201–211

    Article  CAS  Google Scholar 

  • Sollin LV (1970) Arsenic and water pollution hazard. Science 170:871

    Google Scholar 

  • Sposito G (1984) The surface chemistry of soils. Oxford University Press, New York

    Google Scholar 

  • Stollenwerk KG (2003) Geochemical processes controlling transport of arsenic in groundwater: a review of adsorption. In: Welch AH, Stollenwerk KG (eds) Arsenic in ground water. Kluwer Academic Publishers, Boston, pp 67–100

    Chapter  Google Scholar 

  • Stolz J, Basu P, Santini J, Oremland R (2006) Arsenic and selenium in microbial metabolism. Annu Rev Microbiol 60:107–130

    Article  CAS  PubMed  Google Scholar 

  • Su C, Puls RW (2003) In situ remediation of arsenic in simulated groundwater using zerovalent iron: laboratory column tests on combined effects of phosphate and silicate. Environ Sci Technol 37:2582–2587

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Doner HE (1998) Adsorption and oxidation of arsenite on goethite. Soil Sci 163:278–287

    Article  CAS  Google Scholar 

  • Tamaki S, Frankenberger WTJ (1992) Environmental chemistry of arsenic. Rev Environ Toxicol 124:79–110

    CAS  Google Scholar 

  • Tensho A (1973) Studies on behavior of trace elements in flooded soil-rice system by radioisotope technique. Stud Soils Fert Mod Agric 4:65–71

    Google Scholar 

  • Thanabalasingam P, Pickering WF (1986) Arsenic sorption by humic acids. Environ Pollut (Series B) 12:233–246

    Article  CAS  Google Scholar 

  • Tsai SL, Singh S (2009) Arsenic metabolism by microbes in nature and the impact on arsenic remediation. Curr Opin Biotechnol 20:659–667

    Article  CAS  PubMed  Google Scholar 

  • Turpeinen R, Pantsar-Kallio M, Kairesalo T (2002) Role of microbes in controlling the speciation of arsenic and production of arsines in contaminated soils. Sci Total Environ 285:133–145

    Article  CAS  PubMed  Google Scholar 

  • Ullrich-Eberius CI, Sanz A, Novacky AJ (1989) Evaluation of arsenate-vanadate-associated changes of electrical membrane potential and phosphate transport in Lemna gibba G1obal. J Exp Bot 40:119–128

    Article  CAS  Google Scholar 

  • US Environmental Protection Agency (US EPA) (2002) Proven alternatives for aboveground treatment of arsenic in groundwater, EPA-542-S-02-002. Office of Solid Wastes and Emergency 5102G

    Google Scholar 

  • Van den Broeck K, Vendecasteele C, Genus JMC (1998) Speciation by liquid chromatography-inductively coupled plasma-mass spectrometry of arsenic in mung bean seedlings used as bio-indicator for the arsenic contamination. Anal Chim Acta 361:101–111

    Article  Google Scholar 

  • Vela NP, Heitkemper DT, Stewart RK (2001) Arsenic extraction and speciation in carrots using accelerated solvent extraction, liquid chromatography and plasma mass spectrometry. Analyst 126:1011–1017

    Article  CAS  PubMed  Google Scholar 

  • Wallschl ager D, London J (2008) Determination of methylated arsenic-sulfur compounds in ground water. Environ Sci Technol 42:228–234

    Article  CAS  Google Scholar 

  • Walsh LM, Keeney DR (1975) Behavior and phytotoxicity of inorganic arsenicals in soils. ACS Symp Ser 7:35–52

    Article  Google Scholar 

  • Wang S, Zhao X (2009) On the potential of biological treatment for arsenic contaminated soils and groundwater. J Environ Manag 90:2367–2376

    Article  CAS  Google Scholar 

  • Wang P, Sun G, Jia Y et al (2014) A review on completing arsenic biogeochemical cycle: microbial volatilization of arsines in environment. J Environ Sci 26:371–381

    Article  Google Scholar 

  • Wauchope RD (1975) Fixation of arsenical herbicides, phosphate and arsenate in alluvial soils. J Environ Qual 4:355–358

    Article  CAS  Google Scholar 

  • Welch AH, Lico MS, Hughes JL (1988) Arsenic in groundwater of the Western United States. Ground Water 26:333–347

    Article  CAS  Google Scholar 

  • Wells JD, Elliot JF (1971) Geochemical reconnaissance of the Cortez mountains. Nevada US Geol Survey Bull 131:1–18

    Google Scholar 

  • Wells B, Gilmour J (1977) Sterility in rice cultivars as influenced by MSMA rate and water management. Agron J 69:451–454

    Article  CAS  Google Scholar 

  • White DE, Ham JD, Waring GA (1963). Data of geochemistry. (6th Edn.), Chapter F. Chemical composition of surface waters.Geological Survey Professional Paper. Govt printing Office, pp 67

    Google Scholar 

  • Williams LE, Barnett MO, Kramer TA et al (2003) Adsorption and transport of arsenic(V) in experimental subsurface systems. J Environ Qual 32:841–850

    Article  CAS  PubMed  Google Scholar 

  • Wongkongkatep J, Fukushi K, Parkpian P et al (2003) Evaluation of arsenic in fronds from tin mining areas of Thailand. J Environ Sci and Health, Part A Toxic-Hazard Subst Environ Eng 38:200–203

    Google Scholar 

  • Woolson EA (1977) Generation of alkylarsines from soil. Weed Sci 25:412–416

    CAS  Google Scholar 

  • Wu ZH, Xie CG (1990) Method for analysis of total as, inorganic as and organic as in soil and plant. Nongcun Shengtai Huanjing 2:57–60

    Google Scholar 

  • Xie M, Huang YC (1998) Control of arsenic toxicity in rice plants grown on an arsenic-polluted paddy soil. Commun Soil Sci Plant Anal 29:2471–2477

    Article  CAS  Google Scholar 

  • Xu H, Allard B, Grimvall A (1988) Influence of pH and organic substance on the adsorption of As (V) on geologic materials. Water Air Soil Pollut 40:293–305

    CAS  Google Scholar 

  • Xu H, Allard B, Grimvall A (1999) Effects of acidification and natural organic materials on the mobility of arsenic in the environment. Water Air Soil Pollut 57:269–278

    Google Scholar 

  • Xu L, Wu X, Wang S et al (2016) Speciation change and redistribution of arsenic in soil under anaerobic microbial activities. J Hazard Mater 301:538–546

    Article  CAS  PubMed  Google Scholar 

  • Yan-Chu H (1994) Arsenic distribution in soils. In: Nriagu JO (ed) Arsenic in the environment. Part I: cycling and characterization. Wiley, New York, pp 17–49

    Google Scholar 

  • Yee MM, Miyajima T, Takisawa N (2009) Study of ionic surfactantsbinding to humic acid and fulvic acid by potentiometric titration and dynamic light scattering. Colloids Surf A Physicochem Eng Asp 347:128–132

    Article  CAS  Google Scholar 

  • Yuan T, Luo QF, Hu JY, Ong SL, Ng WJ (2003) A study on arsenic removal from household drinking water. J Environ Sci and Health - Part A Toxic/Hazardous Substances Environ Eng 38(9):1731–1744

    Article  CAS  Google Scholar 

  • Zhang W, Singh P, Paling E et al (2004) Arsenic removal from contaminated water by natural iron ores. Miner Eng 17:517–524

    Article  CAS  Google Scholar 

  • Zhao FJ, Ma F, Meharg AA et al (2009) Arsenic uptake and metabolism in plants. New Phytol 181:777–794

    Article  CAS  PubMed  Google Scholar 

  • Zhou D (1986) Adsorption and release of arsenic in soil. Huanjing Huaxue 5:77–83

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, I., Sanyal, S.K., Ghosh, K. (2018). Environmental Chemistry, Fate and Speciation of Arsenic in Groundwater-Soil-Crop Systems. In: Hasanuzzaman, M., Nahar, K., Fujita, M. (eds) Mechanisms of Arsenic Toxicity and Tolerance in Plants. Springer, Singapore. https://doi.org/10.1007/978-981-13-1292-2_16

Download citation

Publish with us

Policies and ethics