Skip to main content

Interaction of Plants and Arbuscular Mycorrhizal Fungi in Responses to Arsenic Stress: A Collaborative Tale Useful to Manage Contaminated Soils

  • Chapter
  • First Online:
Book cover Mechanisms of Arsenic Toxicity and Tolerance in Plants

Abstract

Arsenic (As) is a nonessential element, and its uptake and accumulation in plants can produce several negative effects including disturbance in metabolism and physiological disorders or, in extreme cases, cause plant death. However, some microorganisms have the capacity to tolerate those unfavorable effects and to improve plant development under As-enriched environments. Among them, arbuscular mycorrhizal fungi (AMF) are able to alleviate the harmful effects of the metalloid. AMF have been found to occur in contaminated environments, possibly due to several physiological and biochemical mechanisms that fungi display to tolerate As presence. Mycorrhizal plants show more tolerance to As toxicity since (i) AMF inoculation increases plant biomass and promotes a dilution effect in the As concentration in plant; (ii) sequester As in intraradical hyphae, and reducing the metal intake by roots; (iii) mycorrhizal symbiosis immobilizes As, reducing its translocation to different plant tissues; (iv) AMF can reduce arsenic absorption by repressing the arsenate/phosphate transporters; (v) AMF promote the biotransformation of As and (vi) can protect its plant host reducing oxidative damage. This chapter summarizes current knowledge about the effect of As contamination on plants and the role of arbuscular mycorrhizal symbiosis and its contribution to the phytoremediation of polluted soil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas MHH, Meharg AA (2008) Arsenate, arsenite and dimethyl arsinic acid (DMA) uptake and tolerance in maize (Zea mays L.). Plant Soil 304:277–289

    CAS  Google Scholar 

  • Adriano DC (2001) Trace elements in terrestrial environments. Springer, New York

    Book  Google Scholar 

  • Benabdellah K, Merlos MA, Azcón-Aguilar C et al (2009a) GintGRX1, the first characterized glomeromycotan glutaredoxin, is a multifunctional enzyme that responds to oxidative stress. Fungal Genet Biol 46:94–103

    Article  CAS  PubMed  Google Scholar 

  • Benabdellah K, Azcón-aguilar C, Valderas A et al (2009b) GintPDX1 encodes a protein involved in vitamin B6 biosynthesis that is up-regulated by oxidative stress in the arbuscular mycorrhizal fungus Glomus irregularis. New Phytol 184:682–693

    Article  CAS  PubMed  Google Scholar 

  • Bleeker PM, Hakvoort HW, Bliek M et al (2006) Enhanced arsenate reduction by a CDC25-like tyrosine phosphatase explains increased phytochelatin accumulation in arsenate-tolerant Holcus lanatus. Plant J 45:917–929

    Article  CAS  PubMed  Google Scholar 

  • Bona E, Marsanoa F, Massaa N et al (2011) Proteomic analysis as a tool for investigating arsenic stress in Pteris vittata roots colonized or not by arbuscular mycorrhizal symbiosis. J Proteome 7:1338–1350

    Article  CAS  Google Scholar 

  • Bustingorri C, Balestrasse K, Lavado RS (2015) Effects of high arsenic and fluoride soil concentrations on soybean plants. Phyton 84:407–415

    Google Scholar 

  • Calonne M, Fontaine J, Debiane D et al (2010) Propiconazole toxicity on the non-target organism, the arbuscular mycorrhizal fungus Glomus irregulare. In: Carisse O (ed) Fungicides. InTech, Rijeka, pp 23–39

    Google Scholar 

  • Carey AM, Norton GJ, Deacon C et al (2011) Phloem transport of arsenic species from flag leaf to grain during grain filling. New Phytol 192:87–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catarecha P, Segura MD, Franco-Zorrilla JM et al (2007) A mutant of the Arabidopsis phosphate transporter PHT1;1 displays enhanced arsenic accumulation. Plant Cell 19:1123–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakrabarty D, Trivedi PK, Misra P et al (2009) Comparative transcriptome analysis of arsenate and arsenite stresses in rice seedlings. Chemosphere 74:688–702

    Article  CAS  PubMed  Google Scholar 

  • Chen BD, Xiao XY, Zhu YG et al (2007) The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorus and arsenic acquisition by Medicago sativa Linn. Sci Total Environ 379:226–234

    Article  CAS  PubMed  Google Scholar 

  • Chen LH, Hu XW, Yang WQ et al (2015) The effects of arbuscular mycorrhizal fungi on sex-specific responses to Pb pollution in Populus cathayana. Ecotoxicol Environ Saf 113:460–468

    Article  CAS  PubMed  Google Scholar 

  • Choudhury B, Chowdhury S, Biswas AK (2011) Regulation of growth and metabolism in rice (Oryza sativa L.) by arsenic and its possible reversal by phosphate. J Plant Interact 6:15–24

    Article  CAS  Google Scholar 

  • Christophersen HM, Smith FA, Smith SE (2009) Arbuscular mycorrhizal colonization reduces arsenate uptake in barley via down regulation of transporters in the direct epidermal phosphate uptake pathway. New Phytol 184:962–974

    Article  CAS  PubMed  Google Scholar 

  • Codling EE, Chaney RL, Green CE (2016) Accumulation of lead and arsenic by potato grown on lead-arsenate-contaminated orchard soils. Commun Soil Sci Plant Anal 47:799–807

    Article  CAS  Google Scholar 

  • Czech V, Czövek P, Fodor J et al (2008) Investigation of arsenate phytotoxicity in cucumber plants. Acta Biol Szeged 52:79–80

    Google Scholar 

  • Das HK, Mitra AK, Sengupta PK et al (2004) Arsenic concentrations in rice, vegetables, andfish in Bangladesh: a preliminary study. Environ Int 30:383–387

    Article  CAS  PubMed  Google Scholar 

  • Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J 2015:1

    Article  CAS  Google Scholar 

  • Farooq MA, Li L, Ali B et al (2015) Oxidative injury and antioxidant enzymes regulation in arsenic-exposed seedlings of four Brassica napus L. cultivars. Environ Sci Pollut Res 22:10699–10712

    Article  CAS  Google Scholar 

  • Farooq MA, Gill RA, Ali B et al (2016) Subcellular distribution, modulation of antioxidant and stress-related genes response to arsenic in Brassica napus L. Ecotoxicology 25:350–366

    Article  CAS  PubMed  Google Scholar 

  • Finnegan P, Chen W (2012) Arsenic toxicity: the effects on plant metabolism. Front Physiol 3:1–18

    Article  CAS  Google Scholar 

  • Fuentes A, Almonacid L, Ocampo JA et al (2016) Synergistic interactions between a saprophytic fungal consortium and Rhizophagus irregularis alleviate oxidative stress in plants grown in heavy metal contaminated soil. Plant Soil 407:355–366

    Article  CAS  Google Scholar 

  • Garg N, Singla P (2011) Arsenic toxicity in crop plants, physiological effects and tolerance mechanisms. Environ Chem Lett 9:303–321

    Article  CAS  Google Scholar 

  • Garg N, Singla P (2012) The role of Glomus mosseae on key physiological and biochemical parameters of pea plants grown in arsenic contaminated soil. Sci Hortic 143:92–101

    Article  CAS  Google Scholar 

  • Garg N, Singla P, Bhandari P (2015) Metal uptake, oxidative metabolism, and mycorrhization on pigeonpea and pea under arsenic and cadmium stress. Turk J Agric For 39:234–250

    Article  CAS  Google Scholar 

  • Giovannetti M, Tolosano M, Volpe V et al (2014) Identification and functional characterization of a sulfate transporter induced by both sulfur starvation and mycorrhiza formation in Lotus japonicus. New Phytol 204:609–619

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Chavez C, Harris PJ, Dodd J et al (2002) Arbuscular mycorrhizal fungi confer enhanced arsenate resistance on Holcus lanatus. New Phytol 155:163–171

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Chavez MDA, Ortega-Larrocea MD, Carrillo-Gonzalez R et al (2011) Arsenate induces the expression of fungal genes involved in as transport in arbuscular mycorrhiza. Fungal Biol 115:1197–1209

    Article  CAS  Google Scholar 

  • González-Guerrero M, Benabdellah K, Valderas A et al (2010) GintABC1 encodes a putative ABC transporter of the MRP subfamily induced by cu, cd, and oxidative stress in Glomus irregularis. Mycorrhiza 20:137–146

    Article  PubMed  CAS  Google Scholar 

  • Goupil P, Souguir D, Ferjani E et al (2009) Expression of stress-related genes in tomato plants exposed to arsenic and chromium in nutrient solution. J Plant Physiol 166:1446–1452

    Article  CAS  PubMed  Google Scholar 

  • Gulz PA, Gupta SK, Schulin R (2005) Arsenic accumulation of common plants from contaminated soils. Plant Soil 272:337–347

    Article  CAS  Google Scholar 

  • Gusman GS, Oliveira JA, Farnese FS et al (2013) Arsenate and arsenite, the toxic effects on photosynthesis and growth of lettuce plants. Acta Physiol Plant 35:1201–1209

    CAS  Google Scholar 

  • Hartley-Whitaker J, Ainsworth G, Meharg A (2001) Copperand-arsenic induced oxidative stress in Holcus lanatus L. cloned with differential sensitivity. Plant Cell Environ 24:713–722

    Article  CAS  Google Scholar 

  • Karuppanapandian T, Moo J, Kim C et al (2011) Reactive oxygen species in plants, their generation, signal transduction, and scavenging mechanisms. Aust J Crop Sci 5:709–725

    CAS  Google Scholar 

  • Keshavkant S, Padhan J, Parkhey S et al (2012) Physiological and antioxidant responses of germinating Cicer arietinum seeds to salt stress. Russ J Plant Physiol 59:206–211

    Article  CAS  Google Scholar 

  • Lafuente A, Pajuelo E, Caviedes MA et al (2010) Reduced nodulation in alfalfa induced by arsenic correlates with altered expression of early nodulins. J Plant Physiol 16:286–291

    Article  CAS  Google Scholar 

  • Lafuente A, Perez-Palacios P, Doukkali B et al (2015) Unraveling the effect of arsenic on the model Medicago-Ensifer interaction, a transcriptomic metaanalysis. New Phytol 205:255–272

    Article  CAS  PubMed  Google Scholar 

  • Lee JT, Yu WC (2012) Evaluation of legume growth in arsenic-polluted acidic soils with various pH values. J Water Sustain 2:13–23

    CAS  Google Scholar 

  • Lenoir I, Fontaine J, Sahraoui ALH (2016) Arbuscular mycorrhizal fungal responses to abiotic stresses: a review. Phytochemistry 123:4–15

    Article  CAS  PubMed  Google Scholar 

  • Li RY, Ago Y, Liu WJ et al (2009) The rice aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiol 150:2071–2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Chen XW, Wong MH (2016) Arbuscular mycorrhizal fungi reduced the ratios of inorganic/ organic arsenic in rice grains. Chemosphere 145:224–230

    Article  CAS  PubMed  Google Scholar 

  • Lomax C, Liu WJ, Wu LY et al (2012) Methylated arsenic species in plants originate from soil microorganisms. New Phytol 193:665–672

    Article  CAS  PubMed  Google Scholar 

  • Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and non-resistant plant species. New Phytol 154:29–43

    Article  CAS  Google Scholar 

  • Miransari M (2017) Arbuscular mycorrhizal Fungi and heavy metal tolerance in plants. In: Wu QS (ed) Arbuscular mycorrhizas and stress tolerance of plants. Springer, Singapore, pp 147–161

    Chapter  Google Scholar 

  • Miteva E, Peycheva S (1999) Arsenic accumulation and effect on peroxidase activity in green bean and tomatoes. Bulg J Agric Sci 5:737–740

    Google Scholar 

  • Mukhopadhyay R, Shi J, Rosen BP (2000) Purification and characterization of ACR2p, the Saccharomyces cerevisiae arsenate reductase. J Biol Chem 275:21149–21157

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay R, Rosen BP, Phung LT et al (2002) Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiol Rev 26:311–325

    Article  CAS  PubMed  Google Scholar 

  • Mylona PV, Polidoros AN, Scandalios JG (1998) Modulation of antioxidant responses by arsenic in maize. Free Radic Biol Med 25:576–585

    Article  CAS  PubMed  Google Scholar 

  • Öpik M, Zobel M, Cantero JJ et al (2013) Global sampling of plant roots expands the described molecular diversity of arbuscular mycorrhizal fungi. Mycorrhiza 23:411–430

    Article  PubMed  Google Scholar 

  • Pigna M, Cozzolina V, Violante A et al (2009) Influence of phosphate on the arsenic uptake by wheat (Triticum durum L.) irrigated with arsenic solutions at three different concentrations. Water Air Soil Pollut 197:371–380

    Article  CAS  Google Scholar 

  • Pommerrenig B, Diehn TA, Bienert GP (2015) Metalloido-porins: essentiality of Nodulin 26-like intrinsic proteins in metalloid transport. Plant Sci 238:212–227

    Article  CAS  PubMed  Google Scholar 

  • Pouyu-Rojas E, Siqueira JO, Santos JGD (2006) Compatibilidade simbiótica de fungos micorrízicos arbusculares com espécies arbóreas tropicais. Rev Bras Cienc Solo 30:413–424

    Article  Google Scholar 

  • Rahman MA, Hasegawa H, Rahman MM et al (2007) Effect of arsenic on photosynthesis, growth and yield of five widely cultivated rice (Oryza sativa L.) varieties in Bangladesh. Chemosphere 67:1072–1079

    Article  CAS  Google Scholar 

  • Rahman MA, Hasegawa H, Rahman MM et al (2008) Straighthead disease of rice (Oryza sativa L.) induced by arsenic toxicity. Environ Exp Bot 62:54–59

    Article  CAS  Google Scholar 

  • Rosas-Castor JM, Guzman-Mar JL, Alfaro-Barbosa JM et al (2014) Evaluation of the transfer of soil arsenic to maize crops in suburban areas of San Luis Potosi, Mexico. Sci Total Environ 497:153–162

    Article  PubMed  CAS  Google Scholar 

  • Rozpadek P, Wezowicz K, Stojakowska A et al (2014) Mycorrhizal fungi modulate phytochemical production and antioxidant activity of Cichorium intybus L. (Asteraceae) under metal toxicity. Chemosphere 112:217–224

    Article  CAS  PubMed  Google Scholar 

  • Scandalios JG (2002) The rise of ROS. Trends Biochem Sci 27:483–486

    Article  CAS  PubMed  Google Scholar 

  • Schneider J, Oliveira LM, Stürmer SL et al (2012) Espécies tropicais de pteridófitas em associação com fungos micorrízicos arbusculares em solo contaminado com arsênio. Quim Nova 35:709–714

    Article  CAS  Google Scholar 

  • Schneider J, Stürmer SL, LRG G et al (2013) Arbuscular mycorrhizal fungi in arsenic-contaminated areas in Brazil. J Hazard Mater 262:1105–1115

    Article  CAS  PubMed  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    PubMed  Google Scholar 

  • Shalaby AM (2003) Responses of arbuscular mycorrhizal fungal spores isolated from heavy metal-polluted and unpolluted soil to Zn, cd, Pb and their interactions in vitro. Pak J Biol Sci 6:1416–1422

    Article  Google Scholar 

  • Sharma I (2012) Arsenic induced oxidative stress in plants. Biologia 67:447–453

    Article  CAS  Google Scholar 

  • Shin H, Shin HS, Dewbre GR et al (2004) Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J 39:629–642

    Article  CAS  PubMed  Google Scholar 

  • Shri M, Kumar S, Chakrabarty D et al (2009) Effect of arsenic on growth, oxidative stress, and antioxidant system in rice seedlings. Ecotoxicol Environ Saf 72:1102–1110

    Article  CAS  PubMed  Google Scholar 

  • Shrivastava M, Ma LQ, Singh N (2005) Antioxidant responses of hyper- accumulator and sensitive fern species to arsenic. J Exp Bot 56:335–1342

    Google Scholar 

  • Singh N, Ma LQ, Shrivastava M et al (2006) Metabolic adaptation to arsenic-induced oxidative stress in Pteris vittata L and Pteris ensiformis L. Plant Sci 170:274–282

    Article  CAS  Google Scholar 

  • Singh HP, Batish DR, Kohli RK et al (2007) As induced root growth inhibition in mung bean is due to oxidative stress resulting from enhanced lipid peroxidation. Plant Growth Regul 53:65–73

    Article  CAS  Google Scholar 

  • Singh M, Singh VP, Dubey G et al (2015) Exogenous proline application ameliorates toxic effects of arsenate in Solanum melongena L. seedlings. Ecotoxicol Environ Saf 117:164–173

    Article  CAS  PubMed  Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behavior and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, London

    Google Scholar 

  • Smith SE, Christophersen HM, Pope S et al (2010) Arsenic uptake and toxicity in plants, integrating mycorrhizal influences. Plant Soil 327:1–21

    Article  CAS  Google Scholar 

  • Spagnoletti F, Lavado RS (2015) The arbuscular mycorrhiza Rhizophagus intraradices reduces the negative effects of arsenic on soybean plants. Agronomy 5:188–199

    Article  CAS  Google Scholar 

  • Spagnoletti FN, Tobar NE, Chiocchio VM et al (2014) The in-vitro and in-vivo influence of arsenic on arbuscular mycorrhizal fungi. In: Litter MI, Nicolli HB, Meichtry JM, Quici N, Bundschuh BP, Naidu R (eds) One century of the discovery of arsenicosis in Latin America (1914–2014) as 2014. CRC Press, London, pp 375–377

    Chapter  Google Scholar 

  • Spagnoletti F, Tobar N, Chiocchio V et al (2015) Mycorrhizal inoculation and high arsenic concentrations in the soil increase the survival of soybean plants subjected to strong water stress. Commun Soil Sci Plant Anal 46:2837–2846

    Article  CAS  Google Scholar 

  • Spagnoletti FN, Balestrasse K, Lavado RS et al (2016) Arbuscular mycorrhiza detoxifying response against arsenic and pathogenic fungus in soybean. Ecotoxicol Environ Saf 133:47–56

    Article  CAS  PubMed  Google Scholar 

  • Spagnoletti F, Carmona M, Gómez NET et al (2017) Arbuscular mycorrhiza reduces the negative effects of M. phaseolina on soybean plants in arsenic-contaminated soils. Appl Soil Ecol 121:41–47

    Article  Google Scholar 

  • Stoeva N, Berova M, Zlatev Z (2004) Physiological response of maize to arsenic contamination. Biol Plant 47:449–452

    Article  Google Scholar 

  • Stoeva N, Berova M, Vassilev A et al (2005) Effect of exogenous polyamine diethylenetriamine on oxidative changes and photosynthesis in astreated maize plants (Zea mays L.). J Cent Eur Agric 6:367–374

    Google Scholar 

  • Summers AO (2009) Damage control: regulating defenses against toxic metals and metalloids. Curr Opin Microbiol 12:138–144

    Article  CAS  PubMed  Google Scholar 

  • Sýkorová Z, Ineichen K, Wiemken A et al (2007) The cultivation bias: different communities of arbuscular mycorrhizal fungi detected in roots from the field, from bait plants transplanted to the field, and from a greenhouse trap experiment. Mycorrhiza 18:1–14

    Article  PubMed  CAS  Google Scholar 

  • Talano MA, Cejas RB, González PS et al (2013) Arsenic effect on the model crop symbiosis Bradyrhizobium-soybean. Plant Physiol Biochem 63:8–14

    Article  CAS  PubMed  Google Scholar 

  • Talukdar D (2013) Arsenic induced changes in growth and antioxidant metabolism of fenugreek. Russ J Plant Physiol 60:652–660

    Article  CAS  Google Scholar 

  • Trivedi D, Gill SS, Yadav S et al (2013) Genome-wide analysis of glutathione reductase (GR) genes from rice and Arabidopsis. Plant Signal Behav 8:e23021. https://doi.org/10.4161/psb.23021

    Article  CAS  PubMed  Google Scholar 

  • Ullrich-Eberius CI, Sanz A, Novacky AJ (1989) Evaluation of arsenate and vanadate-associated changes of electrical membrane potential and phosphate transport in Lemna gibba G1. J Exp Bot 40:119–128

    Article  CAS  Google Scholar 

  • Ultra VU, Tanaka S, Sakurai K et al (2007) Arbuscular mycorrhizal fungus (Glomus aggregatum) influences biotransformation of arsenic in the rhizosphere of sunflower (Helianthus annuus L.). J Soil Sci Plant Nutr 53:499–508

    Article  CAS  Google Scholar 

  • Vodnik D, Grcman H, Macek I, vanElteren JT, Kovacevic M (2008) The contribution of glomalin-related soil protein to Pb and Zn sequestration in polluted soil. Sci Total Environ 392:130–136

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Mulligan CN (2006) Occurrence of arsenic contamination in Canada: sources, behavior and distribution. Sci Total Environ 366(2–3):701–721

    Article  CAS  PubMed  Google Scholar 

  • Wu FY, Ye ZH, Wonga MH (2009) Intraspecific differences of arbuscular mycorrhizal fungi in their impacts on arsenic accumulation by Pteris vittata L. Chemosphere 76:1258–1264

    Article  CAS  PubMed  Google Scholar 

  • Xia YS, Chen BD, Christie P et al (2007) Arsenic uptake by arbuscular mycorrhizal maize (Zea mays L.) grown in an arsenic contaminated soil with added phosphorus. J Environ Sci 19:1245–1251

    Article  CAS  Google Scholar 

  • Xu PL, Christie P, Liu Y et al (2008) The arbuscular mycorrhizal fungus Glomus mosseae can enhance arsenic tolerance in Medicago truncatula by increasing plant phosphorus status and restricting arsenate uptake. Environ Pollut 156:215–220

    Article  CAS  PubMed  Google Scholar 

  • Ye Y, Yuan J, Zhang SZ et al (2015) The phosphate transporter gene OsPht1;4 is involved in phosphate homeostasis in Rice. PLoS One 10:e0126186 https://doi.org/10.1371/journal.pone.0126186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu Y, Huang HL, Luo L et al (2009) Arsenic accumulation and speciation in maize as affected by inoculation with arbuscular mycorrhizal fungus Glomus mosseae. J Agric Food Chem 57:3695–3701

    Article  CAS  PubMed  Google Scholar 

  • Zangaro W, Rostirola LV, de Souza PB et al (2013) Root colonization and spore abundance of arbuscular mycorrhizal fungi in distinct successional stages from an Atlantic rainforest biome in southern Brazil. Mycorrhiza 23:221–233

    Article  PubMed  Google Scholar 

  • Zhang WD, Liu DS, Tian JC et al (2009) Toxicity and accumulation of arsenic in wheat (Triticum aestivum L.) varieties of China Phyton. Int J Exp Bot 78:147–154

    Google Scholar 

  • Zhao FJ, Ma JF, Meharg AA et al (2009) Arsenic uptake and metabolism in plants. New Phytol 181:777–794

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Yao J, Choi M et al (2009) A combination method to study microbial communities and activities in zinc contaminated soil. J Hazard Mater 169:875–881

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Geng C, Tong Y et al (2006) Phosphate (pi) and arsenate uptake by two wheat (Triticum aestivum L.) cultivars and their doubled haploid lines. Ann Bot 98:631–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romina Giacometti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Spagnoletti, F.N., Lavado, R.S., Giacometti, R. (2018). Interaction of Plants and Arbuscular Mycorrhizal Fungi in Responses to Arsenic Stress: A Collaborative Tale Useful to Manage Contaminated Soils. In: Hasanuzzaman, M., Nahar, K., Fujita, M. (eds) Mechanisms of Arsenic Toxicity and Tolerance in Plants. Springer, Singapore. https://doi.org/10.1007/978-981-13-1292-2_10

Download citation

Publish with us

Policies and ethics