Skip to main content

The Leptin Resistance

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1090))

Abstract

Leptin is an adipocyte-derived hormone, which contributes to the homeostatic regulation of energy balance and metabolism through humoral and neural pathways. Leptin acts on the neurons in certain brain areas such as the hypothalamus, hippocampus, and brain stem to regulate food intake, thermogenesis, energy expenditure, and homeostasis of glucose/lipid metabolism. The pathologically increased circulating leptin is a biomarker of leptin resistance, which is common in obese individuals. Leptin resistance is defined by a reduced sensitivity or a failure in response of the brain to leptin, showing a decrease in the ability of leptin to suppress appetite or enhance energy expenditure, which causes an increased food intake and finally leads to overweight, obesity, cardiovascular diseases, and other metabolic disorders. Leptin resistance is a challenge for clinical treatment or drug discovery of obesity. Until recently, emerging evidence has been showing novel mechanisms of the leptin resistance. Here, we summarized the advances and controversy of leptin resistance and associated diseases, for better understanding the physiology and pathophysiology of leptin as well as the new strategies for treating obesity and metabolic disorders.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Myers MG Jr, Heymsfield SB, Haft C, Kahn BB, Laughlin M, Leibel RL, Tschöp MH, Yanovski JA (2012) Challenges and opportunities of defining clinical leptin resistance. Cell Metab 15(2):150–156

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Bjørbaek C, Elmquist JK, Michl P, Ahima RS, van Bueren A, McCall AL, Flier JS (1998) Expression of leptin receptor isoforms in rat brain microvessels. Endocrinology 139(8):3485–3491

    PubMed  Google Scholar 

  3. Banks WA, Kastin AJ, Huang W, Jaspan JB, Maness LM (1996) Leptin enters the brain by a saturable system independent of insulin. Peptides 17(2):305–311

    CAS  PubMed  Google Scholar 

  4. Elinav E, Ali M, Bruck R, Brazowski E, Phillips A, Shapira Y, Katz M, Solomon G, Halpern Z, Gertler A (2009) Competitive inhibition of leptin signaling results in amelioration of liver fibrosis through modulation of stellate cell function. Hepatology 49(1):278–286

    CAS  PubMed  Google Scholar 

  5. Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X, Ellis SJ, Lakey ND, Culpepper J, Moore KJ, Breitbart RE, Duyk GM, Tepper RI, Morgenstern JP (1996) Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell 84(3):491–495

    CAS  PubMed  Google Scholar 

  6. Martin SS, Qasim A, Reilly MP (2008) Leptin resistance: a possible interface of inflammation and metabolism in obesity-related cardiovascular disease. J Am Coll Cardiol 52(15):1201–1210

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ropelle ER, Flores MB, Cintra DE, Rocha GZ, Pauli JR, Morari J, de Souza CT, Moraes JC, Prada PO, Guadagnini D, Marin RM, Oliveira AG, Augusto TM, Carvalho HF, Velloso LA, Saad MJ, Carvalheira JB (2010) IL-6 and IL-10 anti-inflammatory activity links exercise to hypothalamic insulin and leptin sensitivity through IKKbeta and ER stress inhibition. PLoS Biol 8(8):e1000465

    PubMed  PubMed Central  Google Scholar 

  8. Bjørbaek C, El-Haschimi K, Frantz JD, Flier JS (1999) The role of SOCS-3 in leptin signaling and leptin resistance. J Biol Chem 274(42):30059–30065

    PubMed  Google Scholar 

  9. Ozcan L, Ergin AS, Lu A, Chung J, Sarkar S, Nie D, Myers MG Jr, Ozcan U (2009) Endoplasmic reticulum stress plays a central role in development of leptin resistance. Cell Metab 9(1):35–51

    CAS  PubMed  Google Scholar 

  10. Xu B, Xie X (2016) Neurotrophic factor control of satiety and body weight. Nat Rev Neurosci 17(5):282–292

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Liao GY, An JJ, Gharami K, Waterhouse EG, Vanevski F, Jones KR, Xu B (2012) Dendritically targeted Bdnf mRNA is essential for energy balance and response to leptin. Nat Med 18(4):564–571

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kleinridders A, Schenten D, Könner AC, Belgardt BF, Mauer J, Okamura T, Wunderlich FT, Medzhitov R, Brüning JC (2009) MyD88 signaling in the CNS is required for development of fatty acid-induced leptin resistance and diet-induced obesity. Cell Metab 10(4):249–259

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Fukuda M, Williams KW, Gautron L, Elmquist JK (2011) Induction of leptin resistance by activation of cAMP-Epac signaling. Cell Metab 13(3):331–339

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Yan J, Mei FC, Cheng H, Lao DH, Hu Y, Wei J, Patrikeev I, Hao D, Stutz SJ, Dineley KT, Motamedi M, Hommel JD, Cunningham KA, Chen J, Cheng X (2013) Enhanced leptin sensitivity, reduced adiposity, and improved glucose homeostasis in mice lacking exchange protein directly activated by cyclic AMP isoform 1. Mol Cell Biol 33(5):918–926

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hwang M, Go Y, Park JH, Shin SK, Song SE, Oh BC, Im SS, Hwang I, Jeon YH, Lee IK, Seino S, Song DK (2017) Epac2a-null mice exhibit obesity-prone nature more susceptible to leptin resistance. Int J Obes 41(2):279–288

    CAS  Google Scholar 

  16. Wang X, Lacza Z, Sun YE, Han W (2014) Leptin resistance and obesity in mice with deletion of methyl-CpG-binding protein 2 (MeCP2) in hypothalamic proopiomelanocortin (POMC) neurons. Diabetologia 57(1):236–245

    CAS  PubMed  Google Scholar 

  17. Weissmann L, Quaresma PG, Santos AC, de Matos AH, Pascoal VD, Zanotto TM, Castro G, Guadagnini D, da Silva JM, Velloso LA, Bittencourt JC, Lopes-Cendes I, Saad MJ, Prada PO (2014) IKK epsilon is key to induction of insulin resistance in the hypothalamus and its inhibition reverses obesity. Diabetes 63(10):3334–3345

    CAS  PubMed  Google Scholar 

  18. Rahmouni K, Sigmund CD, Haynes WG, Mark AL (2009) Hypothalamic ERK mediates the anorectic and thermogenic sympathetic effects of leptin. Diabetes 58(3):536–542

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Balland E, Dam J, Langlet F, Caron E, Steculorum S, Messina A, Rasika S, Falluel-Morel A, Anouar Y, Dehouck B, Trinquet E, Jockers R, Bouret SG, Prévot V (2014) Hypothalamic tanycytes are an ERK-gated conduit for leptin into the brain. Cell Metab 19(2):293–301

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Schneeberger M, Dietrich MO, Sebastián D, Imbernón M, Castaño C, Garcia A, Esteban Y, Gonzalez-Franquesa A, Rodríguez IC, Bortolozzi A, Garcia-Roves PM, Gomis R, Nogueiras R, Horvath TL, Zorzano A, Claret M (2013) Mitofusin 2 in POMC neurons connects ER stress with leptin resistance and energy imbalance. Cell 155(1):172–187

    CAS  PubMed  Google Scholar 

  21. Rocha N, Bulger DA, Frontini A, Titheradge H, Gribsholt SB, Knox R, Page M, Harris J, Payne F, Adams C, Sleigh A, Crawford J, Gjesing AP, Bork-Jensen J, Pedersen O, Barroso I, Hansen T, Cox H, Reilly M, Rossor A, Brown RJ, Taylor SI, McHale D, Armstrong M, Oral EA, Saudek V, O’Rahilly S, Maher ER, Richelsen B, Savage DB, Semple RK (2017) Human biallelic MFN2 mutations induce mitochondrial dysfunction, upper body adipose hyperplasia, and suppression of leptin expression. Elife 6:e23813

    PubMed  PubMed Central  Google Scholar 

  22. Rousso-Noori L, Knobler H, Levy-Apter E, Kuperman Y, Neufeld-Cohen A, Keshet Y, Akepati VR, Klinghoffer RA, Chen A, Elson A (2011) Protein tyrosine phosphatase epsilon affects body weight by downregulating leptin signaling in a phosphorylation-dependent manner. Cell Metab 13(5):562–572

    CAS  PubMed  Google Scholar 

  23. Loh K, Fukushima A, Zhang X, Galic S, Briggs D, Enriori PJ, Simonds S, Wiede F, Reichenbach A, Hauser C, Sims NA, Bence KK, Zhang S, Zhang ZY, Kahn BB, Neel BG, Andrews ZB, Cowley MA, Tiganis T (2011) Elevated hypothalamic TCPTP in obesity contributes to cellular leptin resistance. Cell Metab 14(5):684–699

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kabra DG, Pfuhlmann K, García-Cáceres C, Schriever SC, Casquero García V, Kebede AF, Fuente-Martin E, Trivedi C, Heppner K, Uhlenhaut NH, Legutko B, Kabra UD, Gao Y, Yi CX, Quarta C, Clemmensen C, Finan B, Müller TD, Meyer CW, Paez-Pereda M, Stemmer K, Woods SC, Perez-Tilve D, Schneider R, Olson EN, Tschöp MH, Pfluger PT (2016) Hypothalamic leptin action is mediated by histone deacetylase 5. Nat Commun 7:10782

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Djogo T, Robins SC, Schneider S, Kryzskaya D, Liu X, Mingay A, Gillon CJ, Kim JH, Storch KF, Boehm U, Bourque CW, Stroh T, Dimou L, Kokoeva MV (2016) Adult NG2-Glia are required for median eminence-mediated leptin sensing and body weight control. Cell Metab 23(5):797–810

    CAS  PubMed  Google Scholar 

  26. Matoba K, Muramatsu R, Yamashita T (2017) Leptin sustains spontaneous remyelination in the adult central nervous system. Sci Rep 7:40397

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee J, Liu J, Feng X, Salazar Hernández MA, Mucka P, Ibi D, Choi JW, Ozcan U (2016) Withaferin A is a leptin sensitizer with strong antidiabetic properties in mice. Nat Med 22(9):1023–1032

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Ostman A, Hellberg C, Böhmer FD (2006) Protein-tyrosine phosphatases and cancer. Nat Rev Cancer 6(4):307–320

    PubMed  Google Scholar 

  29. Shintani T, Higashi S, Suzuki R, Takeuchi Y, Ikaga R, Yamazaki T, Kobayashi K, Noda M (2017) PTPRJ inhibits leptin signaling, and induction of PTPRJ in the hypothalamus is a cause of the development of leptin resistance. Sci Rep 7(1):11627

    PubMed  PubMed Central  Google Scholar 

  30. Tsaousidou E, Paeger L, Belgardt BF, Pal M, Wunderlich CM, Brönneke H, Collienne U, Hampel B, Wunderlich FT, Schmidt-Supprian M, Kloppenburg P, Brüning JC (2014) Distinct roles for JNK and IKK activation in Agouti-related peptide neurons in the development of obesity and insulin resistance. Cell Rep 9(4):1495–1506

    CAS  PubMed  Google Scholar 

  31. Gao S, Howard S, LoGrasso PV (2017) Pharmacological inhibition of c-Jun N-terminal kinase reduces food intake and sensitizes leptin’s anorectic signaling actions. Sci Rep 7:41795

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Vernia S, Morel C, Madara JC, Cavanagh-Kyros J, Barrett T, Chase K, Kennedy NJ, Jung DY, Kim JK, Aronin N, Flavell RA, Lowell BB, Davis RJ (2016) Excitatory transmission onto AgRP neurons is regulated by cJun NH2-terminal kinase 3 in response to metabolic stress. elife 5:e10031

    PubMed  PubMed Central  Google Scholar 

  33. Seo J, Fortuno ES 3rd, Suh JM, Stenesen D, Tang W, Parks EJ, Adams CM, Townes T, Graff JM (2009) Atf4 regulates obesity, glucose homeostasis, and energy expenditure. Diabetes 58(11):2565–2573

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Deng J, Yuan F, Guo Y, Xiao Y, Niu Y, Deng Y, Han X, Guan Y, Chen S, Guo F (2017) Deletion of ATF4 in AgRP neurons promotes fat loss mainly via increasing energy expenditure. Diabetes 66(3):640–650

    CAS  PubMed  Google Scholar 

  35. Xiao Y, Deng Y, Yuan F, Xia T, Liu H, Li Z, Liu Z, Ying H, Liu Y, Zhai Q, Chen S, Guo F (2017) ATF4/ATG5 signaling in hypothalamic proopiomelanocortin neurons regulates fat mass via affecting energy expenditure. Diabetes 66(5):1146–1158

    CAS  PubMed  Google Scholar 

  36. Berbari NF, Pasek RC, Malarkey EB, Yazdi SM, McNair AD, Lewis WR, Nagy TR, Kesterson RA, Yoder BK, Malarkey et al (2013) Leptin resistance is a secondary consequence of the obesity in ciliopathy mutant mice. Proc Natl Acad Sci U S A 110(19):7796–7801

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Stratigopoulos G, Martin Carli JF, O’Day DR, Wang L, Leduc CA, Lanzano P2, Chung WK, Rosenbaum M, Egli D, Doherty DA, Leibel RL (2014) Hypomorphism for RPGRIP1L, a ciliary gene vicinal to the FTO locus, causes increased adiposity in mice. Cell Metab 19(5):767–779

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Stratigopoulos G, Burnett LC, Rausch R, Gill R, Penn DB, Skowronski AA, LeDuc CA, Lanzano AJ, Zhang P, Storm DR, Egli D, Leibel RL (2016) Hypomorphism of Fto and Rpgrip1l causes obesity in mice. J Clin Invest 126(5):1897–1910

    PubMed  PubMed Central  Google Scholar 

  39. Mainardi M, Scabia G, Vottari T, Santini F, Pinchera A, Maffei L, Pizzorusso T, Maffei M (2010) A sensitive period for environmental regulation of eating behavior and leptin sensitivity. Proc Natl Acad Sci U S A 107(38):16673–16678

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Cao L, Liu X, Lin EJ, Wang C, Choi EY, Riban V, Lin B, During MJ (2010) Environmental and genetic activation of a brain-adipocyte BDNF/leptin axis causes cancer remission and inhibition. Cell 142(1):52–64

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Beltowski J (2006) Leptin and atherosclerosis. Atherosclerosis 189(1):47–60

    CAS  PubMed  Google Scholar 

  42. Kang SM, Kwon HM, Hong BK, Kim D, Kim IJ, Choi EY, Jang Y, Kim HS, Kim MS, Kwon HC (2000) Expression of leptin receptor (Ob-R) in human atherosclerotic lesions: potential role in intimal neovascularization. Yonsei Med J 41(1):68–75

    CAS  PubMed  Google Scholar 

  43. Farooqi IS, Matarese G, Lord GM, Keogh JM, Lawrence E, Agwu C, Sanna V, Jebb SA, Perna F, Fontana S, Lechler RI, DePaoli AM, O’Rahilly S (2002) Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Invest 110(8):1093–1103

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Pearson TA, Mensah GA, Alexander RW, Anderson JL, Cannon RO 3rd, Criqui M, Fadl YY, Fortmann SP, Hong Y, Myers GL, Rifai N, Smith SC Jr, Taubert K, Tracy RP, Vinicor F, Centers for Disease Control and Prevention; American Heart Association (2003) Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 107(3):499–511

    PubMed  Google Scholar 

  45. Lam QL, Lu L (2007) Role of leptin in immunity. Cell Mol Immunol 4(1):1–13

    CAS  PubMed  Google Scholar 

  46. Singh P, Hoffmann M, Wolk R, Shamsuzzaman AS, Somers VK (2007) Leptin induces C-reactive protein expression in vascular endothelial cells. Arterioscler Thromb Vasc Biol 27(9):e302–e307

    CAS  PubMed  Google Scholar 

  47. Calabró P, Willerson JT, Yeh ET (2003) Inflammatory cytokines stimulated C-reactive protein production by human coronary artery smooth muscle cells. Circulation 108(16):1930–1932

    PubMed  Google Scholar 

  48. Pai JK, Pischon T, Ma J, Manson JE, Hankinson SE, Joshipura K, Curhan GC, Rifai N, Cannuscio CC, Stampfer MJ, Rimm EB (2004) Inflammatory markers and the risk of coronary heart disease in men and women. N Engl J Med 351(25):2599–2610

    CAS  PubMed  Google Scholar 

  49. Cirillo P, Angri V, De Rosa S, Calì G, Petrillo G, Maresca F, D’Ascoli GL, Maietta P, Brevetti L, Chiariello M (2010) Pro-atherothrombotic effects of leptin in human coronary endothelial cells. Thromb Haemost 103(5):1065–1075

    CAS  PubMed  Google Scholar 

  50. Huby AC, Antonova G, Groenendyk J, Gomez-Sanchez CE, Bollag WB, Filosa JA, Belin de Chantemèle EJ (2015) Adipocyte-derived hormone leptin is a direct regulator of aldosterone secretion, which promotes endothelial dysfunction and cardiac fibrosis. Circulation 132(22):2134–2145

    CAS  PubMed  Google Scholar 

  51. Martin SS, Qasim A, Reilly MP (2008) A possible interface of inflammation and metabolism in obesity-related cardiovascular disease. J Am Coll Cardiol 52(15):1201–1210

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Pelleymounter MA, Cullen MJ, Baker MB, Hecht R, Winters D, Boone T, Collins F (1995) Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269(5223):540–543

    CAS  PubMed  Google Scholar 

  53. Farooqi IS, Jebb SA, Langmack G, Lawrence E, Cheetham CH, Prentice AM, Hughes IA, McCamish MA, O’Rahilly S (1999) Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N Engl J Med 341(12):879–884

    CAS  PubMed  Google Scholar 

  54. Mantzoros CS, Liolios AD, Tritos NA, Kaklamani VG, Doulgerakis DE, Griveas I, Moses AC, Flier JS (1998) Circulating insulin concentrations, smoking, and alcohol intake are important independent predictors of leptin in young healthy men. Obes Res 6(3):179–186

    CAS  PubMed  Google Scholar 

  55. Kieffer TJ, Heller RS, Habener JF (1996) Leptin receptors expressed on pancreatic beta-cells. Biochem Biophys Res Commun 224(2):522–527

    CAS  PubMed  Google Scholar 

  56. Seufert J, Kieffer TJ, Leech CA, Holz GG, Moritz W, Ricordi C, Habener JF (1999) Leptin suppression of insulin secretion and gene expression in human pancreatic islets: implications for the development of adipogenic diabetes mellitus. J Clin Endocrinol Metab 84(2):670–676

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Covey SD, Wideman RD, McDonald C, Unniappan S, Huynh F, Asadi A, Speck M, Webber T, Chua SC, Kieffer TJ (2006) The pancreatic beta cell is a key site for mediating the effects of leptin on glucose homeostasis. Cell Metab 4(4):291–302

    CAS  PubMed  Google Scholar 

  58. Zhao AZ, Bornfeldt KE, Beavo JA (1998) Leptin inhibits insulin secretion by activation of phosphodiesterase 3B. J Clin Invest 102(5):869–873

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Coppari R, Ichinose M, Lee CE, Pullen AE, Kenny CD, McGovern RA, Tang V, Liu SM, Ludwig T, Chua SC Jr, Lowell BB, Elmquist JK (2005) The hypothalamic arcuate nucleus: a key site for mediating leptin’s effects on glucose homeostasis and locomotor activity. Cell Metab 1(1):63–72

    CAS  PubMed  Google Scholar 

  60. Hill JW, Xu Y, Preitner F, Fukuda M, Cho YR, Luo J, Balthasar N, Coppari R, Cantley LC, Kahn BB, Zhao JJ, Elmquist JK (2009) Phosphatidyl inositol 3-kinase signaling in hypothalamic proopiomelanocortin neurons contributes to the regulation of glucose homeostasis. Endocrinology 150(11):4874–4882

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Gonçalves GH, Li W, Garcia AV, Figueiredo MS, Bjørbæk C (2014) Hypothalamic agouti-related peptide neurons and the central melanocortin system are crucial mediators of leptin’s antidiabetic actions. Cell Rep 7(4):1093–1103

    PubMed  PubMed Central  Google Scholar 

  62. Perry RJ, Zhang XM, Zhang D, Kumashiro N, Camporez JP, Cline GW, Rothman DL, Shulman GI (2014) Leptin reverses diabetes by suppression of the hypothalamic-pituitary-adrenal axis. Nat Med 20(7):759–763

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Yu X, Park BH, Wang MY, Wang ZV, Unger RH (2008) Making insulin-deficient type 1 diabetic rodents thrive without insulin. Proc Natl Acad Sci U S A 105(37):14070–14075

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Fujikawa T, Chuang JC, Sakata I, Ramadori G, Coppari R (2010) Leptin therapy improves insulin-deficient type 1 diabetes by CNS-dependent mechanisms in mice. Proc Natl Acad Sci U S A 107(40):17391–17396

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Simonds SE, Pryor JT, Ravussin E, Greenway FL, Dileone R, Allen AM, Bassi J, Elmquist JK, Keogh JM, Henning E, Myers MG Jr, Licinio J, Brown RD, Enriori PJ, O’Rahilly S, Sternson SM, Grove KL, Spanswick DC, Farooqi IS, Cowley MA (2014) Leptin mediates the increase in blood pressure associated with obesity. Cell 159(6):1404–1416

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Cone RD (2005) Anatomy and regulation of the central melanocortin system. Nat Neurosci 8(5):571–578

    CAS  PubMed  Google Scholar 

  67. Rahmouni K, Haynes WG, Morgan DA, Mark AL (2003) Role of melanocortin-4 receptors in mediating renal sympathoactivation to leptin and insulin. J Neurosci 23(14):5998–6004

    CAS  PubMed  Google Scholar 

  68. Patel HR, Qi Y, Hawkins EJ, Hileman SM, Elmquist JK, Imai Y, Ahima RS (2006) Neuropeptide Y deficiency attenuates responses to fasting and high-fat diet in obesity-prone mice. Diabetes 55(11):3091–3098

    CAS  PubMed  Google Scholar 

  69. Marsh AJ, Fontes MA, Killinger S, Pawlak DB, Polson JW, Dampney RA (2003) Cardiovascular responses evoked by leptin acting on neurons in the ventromedial and dorsomedial hypothalamus. Hypertension 42(4):488–493

    CAS  PubMed  Google Scholar 

  70. Mark AL, Agassandian K, Morgan DA, Liu X, Cassell MD, Rahmouni K (2009) Leptin signaling in the nucleus tractus solitarii increases sympathetic nerve activity to the kidney. Hypertension 53(2):375–380

    CAS  PubMed  Google Scholar 

  71. Xue B, Yu Y, Zhang Z, Guo F, Beltz TG, Thunhorst RL, Felder RB, Johnson AK (2016) Leptin mediates high-fat diet sensitization of angiotensin II-elicited hypertension by upregulating the brain renin-angiotensin system and inflammation. Hypertension 67(5):970–976

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Huby AC, Otvos L Jr, Belin de Chantemèle EJ (2016) Leptin induces hypertension and endothelial dysfunction via aldosterone-dependent mechanisms in obese female mice. Hypertension 67(5):1020–1028

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Brown RJ, Meehan CA, Gorden P (2015) Leptin does not mediate hypertension associated with human obesity. Cell 162(3):465–466

    CAS  PubMed  Google Scholar 

  74. Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M (2008) Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 371(9612):569–578

    PubMed  Google Scholar 

  75. Lichtman MA (2010) Obesity and the risk for a hematological malignancy: leukemia, lymphoma, or myeloma. Oncologist 15(10):1083–1101

    PubMed  PubMed Central  Google Scholar 

  76. Li D, Morris JS, Liu J, Hassan MM, Day RS, Bondy ML, Abbruzzese JL (2009) Body mass index and risk, age of onset, and survival in patients with pancreatic cancer. JAMA 301(24):2553–2562

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Shida D, Kitayama J, Mori K, Watanabe T, Nagawa H (2005) Transactivation of epidermal growth factor receptor is involved in leptin-induced activation of janus-activated kinase 2 and extracellular signal-regulated kinase 1/2 in human gastric cancer cells. Cancer Res 65(20):9159–9163

    CAS  PubMed  Google Scholar 

  78. Saxena NK, Sharma D, Ding X, Lin S, Marra F, Merlin D, Anania FA (2007) Concomitant activation of the JAK/STAT, PI3K/AKT, and ERK signaling is involved in leptin-mediated promotion of invasion and migration of hepatocellular carcinoma cells. Cancer Res 67(6):2497–2507

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Huang XF, Chen JZ (2009) Obesity, the PI3K/Akt signal pathway and colon cancer. Obes Rev 10(6):610–616

    CAS  PubMed  Google Scholar 

  80. Pal A, Barber TM, Van de Bunt M, Rudge SA, Zhang Q, Lachlan KL, Cooper NS, Linden H, Levy JC, Wakelam MJ, Walker L, Karpe F, Gloyn AL (2012) PTEN mutations as a cause of constitutive insulin sensitivity and obesity. N Engl J Med 367(11):1002–1011

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Kato S, Abarzua-Catalan L, Trigo C, Delpiano A, Sanhueza C, García K, Ibañez C, Hormazábal K, Diaz D, Brañes J, Castellón E, Bravo E, Owen G, Cuello MA (2015) Leptin stimulates migration and invasion and maintains cancer stem-like properties in ovarian cancer cells: an explanation for poor outcomes in obese women. Oncotarget 6(25):21100–21119

    PubMed  PubMed Central  Google Scholar 

  82. Alshaker H, Sacco K, Alfraidi A, Muhammad A, Winkler M, Pchejetski D (2015) Leptin signalling, obesity and prostate cancer: molecular and clinical perspective on the old dilemma. Oncotarget 6(34):35556–35563

    PubMed  PubMed Central  Google Scholar 

  83. Nath AK, Brown RM, Michaud M, Sierra-Honigmann MR, Snyder M, Madri JA (2008) Leptin affects endocardial cushion formation by modulating EMT and migration via Akt signaling cascades. J Cell Biol 181(2):367–380

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Strong AL, Ohlstein JF, Biagas BA, Rhodes LV, Pei DT, Tucker HA, Llamas C, Bowles AC, Dutreil MF, Zhang S, Gimble JM, Burow ME, Bunnell BA (2015) Leptin produced by obese adipose stromal/stem cells enhances proliferation and metastasis of estrogen receptor positive breast cancers. Breast Cancer Res 17:112

    PubMed  PubMed Central  Google Scholar 

  85. Stattin P, Söderberg S, Hallmans G, Bylund A, Kaaks R, Stenman UH, Bergh A, Olsson T (2001) Leptin is associated with increased prostate cancer risk: a nested case-referent study. J Clin Endocrinol Metab 86(3):1341–1345

    CAS  PubMed  Google Scholar 

  86. Tamakoshi K, Toyoshima H, Wakai K, Kojima M, Suzuki K, Watanabe Y, Hayakawa N, Yatsuya H, Kondo T, Tokudome S, Hashimoto S, Suzuki S, Kawado M, Ozasa K, Ito Y, Tamakoshi A (2005) Leptin is associated with an increased female colorectal cancer risk: a nested case-control study in Japan. Oncology 68(4–6):454–461

    CAS  PubMed  Google Scholar 

  87. Lagiou P, Signorello LB, Trichopoulos D, Tzonou A, Trichopoulou A, Mantzoros CS (1998) Leptin in relation to prostate cancer and benign prostatic hyperplasia. Int J Cancer 76(1):25–28

    CAS  PubMed  Google Scholar 

  88. Mantzoros CS, Bolhke K, Moschos S, Cramer DW (1999) Leptin in relation to carcinoma in situ of the breast: a study of pre-menopausal cases and controls. Int J Cancer 80(4):523–526

    CAS  PubMed  Google Scholar 

  89. Sánchez-Margalet V, Martín-Romero C, Santos-Alvarez J, Goberna R, Najib S, Gonzalez-Yanes C (2003) Role of leptin as an immunomodulator of blood mononuclear cells: mechanisms of action. Clin Exp Immunol 133(1):11–19

    PubMed  PubMed Central  Google Scholar 

  90. Mancuso P, McNish RW, Peters-Golden M, Brock TG (2001) Evaluation of phagocytosis and arachidonate metabolism by alveolar macrophages and recruited neutrophils from F344xBN rats of different ages. Mech Ageing Dev 122(15):1899–1913

    CAS  PubMed  Google Scholar 

  91. Tian Z, Sun R, Wei H, Gao B (2002) Impaired natural killer (NK) cell activity in leptin receptor deficient mice: leptin as a critical regulator in NK cell development and activation. Biochem Biophys Res Commun 298(3):297–302

    CAS  PubMed  Google Scholar 

  92. Procaccini C, De Rosa V, Galgani M, Carbone F, La Rocca C, Formisano L, Matarese G (2013) Role of adipokines signaling in the modulation of T cells function. Front Immunol 4:332

    PubMed  PubMed Central  Google Scholar 

  93. Loffreda S, Yang SQ, Lin HZ, Karp CL, Brengman ML, Wang DJ, Klein AS, Bulkley GB, Bao C, Noble PW, Lane MD, Diehl AM (1998) Leptin regulates proinflammatory immune responses. FASEB J 12(1):57–65

    CAS  PubMed  Google Scholar 

  94. Otero M, Lago R, Gomez R, Lago F, Dieguez C, Gómez-Reino JJ, Gualillo O (2006) Changes in plasma levels of fat-derived hormones adiponectin, leptin, resistin and visfatin in patients with rheumatoid arthritis. Ann Rheum Dis 65(9):1198–1201

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Barranco C (2016) Systemic lupus erythematosus: leptin linked to SLE. Nat Rev Rheumatol 12(11):623

    PubMed  Google Scholar 

  96. Matarese G, Carrieri PB, Montella S, De Rosa V, La Cava A (2010) Leptin as a metabolic link to multiple sclerosis. Nat Rev Neurol 6(8):455–461

    CAS  PubMed  Google Scholar 

  97. Lourenço EV, Liu A, Matarese G, La Cava A (2016) Leptin promotes systemic lupus erythematosus by increasing autoantibody production and inhibiting immune regulation. Proc Natl Acad Sci U S A 113(38):10637–10642

    PubMed  PubMed Central  Google Scholar 

  98. Hersoug LG, Linneberg A (2007) The link between the epidemics of obesity and allergic diseases: does obesity induce decreased immune tolerance? Allergy 62(10):1205–1213

    CAS  PubMed  Google Scholar 

  99. Lieb W, Beiser AS, Vasan RS, Tan ZS, Au R, Harris TB, Roubenoff R, Auerbach S, DeCarli C, Wolf PA, Seshadri S (2009) Association of plasma leptin levels with incident Alzheimer disease and MRI measures of brain aging. JAMA 302(23):2565–2572

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Woolley JD, Khan BK, Natesan A, Karydas A, Dallman M, Havel P, Miller BL, Rankin KP (2014) Satiety-related hormonal dysregulation in behavioral variant frontotemporal dementia. Neurology 82(6):512–520

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Ahmed RM, Latheef S, Bartley L, Irish M, Halliday GM, Kiernan MC, Hodges JR, Piguet O (2015) Eating behavior in frontotemporal dementia: peripheral hormones vs hypothalamic pathology. Neurology 85(15):1310–1317

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (No. 81471064, No. 81670779, and No. 81870590), the Beijing Municipal Natural Science Foundation (No. 7162097), the Peking University Research Foundation (No. BMU20140366), and the National Key Research and Development Program of China (2017YFC1700402).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruimao Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, J., Yang, X., Yu, S., Zheng, R. (2018). The Leptin Resistance. In: Wu, Q., Zheng, R. (eds) Neural Regulation of Metabolism. Advances in Experimental Medicine and Biology, vol 1090. Springer, Singapore. https://doi.org/10.1007/978-981-13-1286-1_8

Download citation

Publish with us

Policies and ethics