Skip to main content

The Leptin Signaling

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1090))

Abstract

Leptin plays a critical role in the regulation of energy balance and metabolic homeostasis. Impairment of leptin signaling is closely involved in the pathogenesis of obesity and metabolic diseases, including diabetes, cardiovascular disease, etc. Leptin initiates its intracellular signaling in the leptin-receptor-expressing neurons in the central nervous system to exert physiological function, thereby leading to a suppression of appetite, a reduction of food intake, a promotion of mitochondrial oxidation, an enhancement of thermogenesis, and a decrease in body weight. In this review, the studies on leptin neural and cellular pathways are summarized with an emphasis on the progress made during the last 10 years, for better understanding the molecular mechanism of obesity and other metabolic diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Coleman DL (2010) A historical perspective on leptin. Nat Med 16(10):1097–1099

    CAS  PubMed  Google Scholar 

  2. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372(6505):425–432

    CAS  PubMed  Google Scholar 

  3. Münzberg H, Morrison CD (2015) Structure, production and signaling of leptin. Metabolism 64(1):13–23

    PubMed  Google Scholar 

  4. Denver RJ, Bonett RM, Boorse GC (2011) Evolution of leptin structure and function. Neuroendocrinology 94(1):21–38

    CAS  PubMed  Google Scholar 

  5. Myers MG, Cowley MA, Munzberg H (2008) Mechanisms of leptin action and leptin resistance. Annu Rev Physiol 70:537–556

    CAS  PubMed  Google Scholar 

  6. Dalamaga M, Chou SH, Shields K, Papageorgiou P, Polyzos SA, Mantzoros CS (2013) Leptin at the intersection of neuroendocrinology and metabolism: current evidence and therapeutic perspectives. Cell Metab 18(1):29–42

    CAS  PubMed  Google Scholar 

  7. Licinio J, Caglayan S, Ozata M, Yildiz BO, de Miranda PB, O'Kirwan F, Whitby R, Liang L, Cohen P, Bhasin S, Krauss RM, Veldhuis JD, Wagner AJ, DePaoli AM, McCann SM, Wong ML (2004) Phenotypic effects of leptin replacement on morbid obesity, diabetes mellitus, hypogonadism, and behavior in leptin-deficient adults. Proc Natl Acad Sci USA 101(13):4531–4536

    CAS  PubMed  Google Scholar 

  8. Zhou Y, Rui L (2013) Leptin signaling and leptin resistance. Front Med 7(2):207–222

    PubMed  PubMed Central  Google Scholar 

  9. Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG (2000) Central nervous system control of food intake. Nature 404(6778):661–671

    CAS  PubMed  Google Scholar 

  10. Vong L, Ye C, Yang Z, Choi B, Chua S Jr, Lowell BB (2011) Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons. Neuron 71(1):142–154

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Leshan RL, Greenwald-Yarnell M, Patterson CM, Gonzalez IE, Myers MG Jr (2012) Leptin action through hypothalamic nitric oxide synthase-1-expressing neurons controls energy balance. Nat Med 18(5):820–823

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Aponte Y, Atasoy D, Sternson SM (2011) AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nat Neurosci 14(3):351–355

    CAS  PubMed  Google Scholar 

  13. Myers MG Jr, Olson DP (2014) SnapShot: neural pathways that control feeding. Cell Metab 19(4):732–732

    CAS  PubMed  Google Scholar 

  14. Manfredi-Lozano M, Roa J, Ruiz-Pino F, Piet R, Garcia-Galiano D, Pineda R, Zamora A, Leon S, Sanchez-Garrido MA, Romero-Ruiz A, Dieguez C, Vazquez MJ, Herbison AE, Pinilla L, Tena-Sempere M (2016) Defining a novel leptin-melanocortin-kisspeptin pathway involved in the metabolic control of puberty. Mol Metab 5(10):844–857

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Morrison SF, Nakamura K, Madden CJ (2008) Central control of thermogenesis in mammals. Exp Physiol 93(7):773–797

    PubMed  PubMed Central  Google Scholar 

  16. Takahashi A, Kishi E, Ishimaru H, Ikarashi Y, Maruyama Y (2001) Role of preoptic and anterior hypothalamic cholinergic input on water intake and body temperature. Brain Res 889(1–2):191–199

    CAS  PubMed  Google Scholar 

  17. Zhang Y, Kerman IA, Laque A, Nguyen P, Faouzi M, Louis GW et al (2011) Leptin-receptor-expressing neurons in the dorsomedial hypothalamus and median preoptic area regulate sympathetic brown adipose tissue circuits. J Neurosci 31(5):1873–1884

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Rezai-Zadeh K, Yu S, Jiang Y, Laque A, Schwarzenburg C, Morrison CD et al (2014) Leptin receptor neurons in the dorsomedial hypothalamus are key regulators of energy expenditure and body weight, but not food intake. Mol Metab 3:681–693

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Chao PT, Yang L, Aja S, Moran TH, Bi S (2011) Knockdown of NPY expression in the dorsomedial hypothalamus promotes development of brown adipocytes and prevents diet-induced obesity. Cell Metab 13(5):573–583

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bernardis LL, Bellinger LL (1996) The lateral hypothalamic area revisited: ingestive behavior. Neurosci Biobehav Rev 20(2):189–287

    CAS  PubMed  Google Scholar 

  21. Leinninger GM (2011) Lateral thinking about leptin: a review of leptin action via the lateral hypothalamus. Physiol Behav 104(4):572–581

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Bonnavion P, Jackson AC, Carter ME, de Lecea L (2015) Antagonistic interplay between hypocretin and leptin in the lateral hypothalamus regulates stress responses. Nat Commun 6:6266

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sutton AK, Myers MG Jr, Olson DP (2016) The role of PVH circuits in leptin action and energy balance. Annu Rev Physiol 78:207–221

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ziegler DR, Edwards MR, Ulrich-Lai YM, Herman JP, Cullinan WE (2012) Brainstem origins of glutamatergic innervation of the rat hypothalamic paraventricular nucleus. J Comp Neurol 520(11):2369–2394

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ulrich-Lai YM, Jones KR, Ziegler DR, Cullinan WE, Herman JP (2011) Forebrain origins of glutamatergic innervation to the rat paraventricular nucleus of the hypothalamus: differential inputs to the anterior versus posterior subregions. J Comp Neurol 519(7):1301–1319

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Garfield AS, Li C, Madara JC, Shah BP, Webber E, Steger JS, Campbell JN, Gavrilova O, Lee CE, Olson DP, Elmquist JK, Tannous BA, Krashes MJ, Lowell BB (2015) A neural basis for melanocortin-4 receptor-regulated appetite. Nat Neurosci 18(6):863–871

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Sutton AK, Pei H, Burnett KH, Myers MG Jr, Rhodes CJ, Olson DP (2014) Control of food intake and energy expenditure by Nos1 neurons of the paraventricular hypothalamus. J Neurosci 34(46):15306–15318

    PubMed  PubMed Central  Google Scholar 

  28. Grill HJ, Hayes MR (2012) Hindbrain neurons as an essential hub in the neuroanatomically distributed control of energy balance. Cell Metab 16(3):296–309

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Price CJ, Hoyda TD, Ferguson AV (2008) The area postrema: a brain monitor and integrator of systemic autonomic state. Neuroscientist 14(2):182–194. Epub 2007 Dec 13.

    PubMed  Google Scholar 

  30. Hayes MR, Skibicka KP, Leichner TM, Guarnieri DJ, DiLeone RJ, Bence KK, Grill HJ (2010) Endogenous leptin signaling in the caudal nucleus tractus solitaries and area postrema is required for energy balance regulation. Cell Metab 11(1):77–83

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Huo L, Maeng L, Bjørbaek C, Grill HJ (2007) Leptin and the control of food intake: neurons in the nucleus of the solitary tract are activated by both gastric distension and leptin. Endocrinology 148(5):2189–2197

    CAS  PubMed  Google Scholar 

  32. Fan W, Ellacott KL, Halatchev IG, Takahashi K, Yu P, Cone RD (2004) Cholecystokinin-mediated suppression of feeding involves the brainstem melanocortin system. Nat Neurosci 7(4):335–336

    CAS  PubMed  Google Scholar 

  33. Williams DL, Baskin DG, Schwartz MW (2006) Leptin regulation of the anorexic response to glucagon-like peptide-1 receptor stimulation. Diabetes 55(12):3387–3393

    CAS  PubMed  Google Scholar 

  34. Morales M, Margolis EB (2017) Ventral tegmental area: cellular heterogeneity, connectivity and behaviour. Nat Rev Neurosci 18(2):73–85

    CAS  PubMed  Google Scholar 

  35. Fields HL, Hjelmstad GO, Margolis EB, Nicola SM (2007) Ventral tegmental area neurons in learned appetitive behavior and positive reinforcement. Annu Rev Neurosci 30:289–316

    CAS  PubMed  Google Scholar 

  36. Oliva I, Wanat MJ (2016) Ventral tegmental area afferents and drug-dependent behaviors. Front Psych 7:30

    Google Scholar 

  37. Hommel JD, Trinko R, Sears RM, Georgescu D, Liu ZW, Gao XB, Thurmon JJ, Marinelli M, DiLeone RJ (2006) Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron 51(6):801–810

    CAS  PubMed  Google Scholar 

  38. Leinninger GM, Jo YH, Leshan RL, Louis GW, Yang H, Barrera JG, Wilson H, Opland DM, Faouzi MA, Gong Y, Jones JC, Rhodes CJ, Chua S Jr, Diano S, Horvath TL, Seeley RJ, Becker JB, Münzberg H, Myers MG Jr (2009) Leptin acts via leptin receptor-expressing lateral hypothalamic neurons to modulate the mesolimbic dopamine system and suppress feeding. Cell Metab 10(2):89–98

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ikemoto S (2007) Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Res Rev 56(1):27–78

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Leshan RL, Opland DM, Louis GW, Leinninger GM, Patterson CM, Rhodes CJ, Münzberg H, Myers MG Jr (2010) Ventral tegmental area leptin receptor neurons specifically project to and regulate cocaine- and amphetamine-regulated transcript neurons of the extended central amygdala. J Neurosci 30(16):5713–5723

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Wu Q, Boyle MP, Palmiter RD (2009) Loss of GABAergic signaling by AgRP neurons to the parabrachial nucleus leads to starvation. Cell 137(7):1225–1234

    PubMed  PubMed Central  Google Scholar 

  42. Wu Q, Clark MS, Palmiter RD (2012) Deciphering a neuronal circuit that mediates loss of appetite. Nature 483(7391):594–597

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Roman CW, Derkach VA, Palmiter RD (2016) Genetically and functionally defined NTS to PBN brain circuits mediating anorexia. Nat Commun 7:11905

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Carter ME, Soden ME, Zweifel LS, Palmiter RD (2013) Genetic identification of a neural circuit that suppresses appetite. Nature 503(7474):111–114

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Flak JN, Patterson CM, Garfield AS, D'Agostino G, Goforth PB, Sutton AK, Malec PA, Wong JT, Germani M, Jones JC, Rajala M, Satin L, Rhodes CJ, Olson DP, Kennedy RT, Heisler LK, Myers MG Jr (2014) Leptin-inhibited PBN neurons enhance responses to hypoglycemia in negative energy balance. Nat Neurosci 17(12):1744–1750

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Garfield AS, Shah BP, Madara JC, Burke LK, Patterson CM, Flak J, Neve RL, Evans ML, Lowell BB, Myers MG Jr, Heisler LK (2014) A parabrachial-hypothalamic cholecystokinin neurocircuit controls counterregulatory responses to hypoglycemia. Cell Metab 20(6):1030–1037

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Marty N, Dallaporta M, Thorens B (2007) Brain glucose sensing, counterregulation, and energy homeostasis. Physiology (Bethesda) 22:241–251

    CAS  Google Scholar 

  48. Kanoski SE, Grill HJ (2017) Hippocampus contributions to food intake control: mnemonic, neuroanatomical, and endocrine mechanisms. Biol Psychiatry 81(9):748–756

    PubMed  Google Scholar 

  49. Kanoski SE, Hayes MR, Greenwald HS, Fortin SM, Gianessi CA, Gilbert JR, Grill HJ (2011) Hippocampal leptin signaling reduces food intake and modulates food-related memory processing. Neuropsychopharmacology 36(9):1859–1870

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Flak JN, Arble D, Pan W, Patterson C, Lanigan T, Goforth PB, Sacksner J, Joosten M, Morgan DA, Allison MB, Hayes J, Feldman E, Seeley RJ, Olson DP, Rahmouni K, Myers MG Jr (2017) A leptin-regulated circuit controls glucose mobilization during noxious stimuli. J Clin Invest 127(8):3103–3113

    PubMed  PubMed Central  Google Scholar 

  51. Taniguchi T (1995) Cytokine signaling through nonreceptor protein tyrosine kinases. Science 268(5208):251–255

    CAS  PubMed  Google Scholar 

  52. Kloek C, Haq AK, Dunn SL, Lavery HJ, Banks AS, Myers MG Jr (2002) Regulation of Jak kinases by intracellular leptin receptor sequences. J Biol Chem 277(44):41547–41555

    CAS  PubMed  Google Scholar 

  53. Kwon O, Kim KW, Kim MS (2016) Leptin signaling pathways in hypothalamic neurons. Cell Mol Life Sci 73(7):1457–1477

    CAS  PubMed  Google Scholar 

  54. Bates SH, Stearns WH, Dundon TA, Schubert M, Tso AW, Wang Y, Banks AS, Lavery HJ, Haq AK, Maratos-Flier E, Neel BG, Schwartz MW, Myers MG Jr (2003) STAT3 signalling is required for leptin regulation of energy balance but not reproduction. Nature 421(6925):856–859

    CAS  PubMed  Google Scholar 

  55. Gong Y, Ishida-Takahashi R, Villanueva EC, Fingar DC, Münzberg H, Myers MG Jr (2007) The long form of the leptin receptor regulates STAT5 and ribosomal protein S6 via alternate mechanisms. J Biol Chem 282(42):31019–31027

    CAS  PubMed  Google Scholar 

  56. Gao Q, Wolfgang MJ, Neschen S, Morino K, Horvath TL, Shulman GI, Fu XY (2004) Disruption of neural signal transducer and activator of transcription 3 causes obesity, diabetes, infertility, and thermal dysregulation. Proc Natl Acad Sci USA 101:4661–4666

    CAS  PubMed  Google Scholar 

  57. Münzberg H, Huo L, Nillni EA, Hollenberg AN, Bjørbaek C (2003) Role of signal transducer and activator of transcription 3 in regulation of hypothalamic proopiomelanocortin gene expression by leptin. Endocrinology 144(5):2121–2131

    PubMed  Google Scholar 

  58. Mesaros A, Koralov SB, Rother E, Wunderlich FT, Ernst MB, Barsh GS, Rajewsky K, Brüning JC (2008) Activation of Stat3 signaling in AgRP neurons promotes locomotor activity. Cell Metab 7(3):236–248

    CAS  PubMed  Google Scholar 

  59. Ernst MB, Wunderlich CM, Hess S, Paehler M, Mesaros A, Koralov SB, Kleinridders A, Husch A, Münzberg H, Hampel B, Alber J, Kloppenburg P, Brüning JC, Wunderlich FT (2009) Enhanced Stat3 activation in POMC neurons provokes negative feedback inhibition of leptin and insulin signaling in obesity. J Neurosci 29(37):11582–11593

    CAS  PubMed  Google Scholar 

  60. Banks AS, Davis SM, Bates SH, Myers MG Jr (2000) Activation of downstream signals by the long form of the leptin receptor. J Biol Chem 275(19):14563–14572

    CAS  PubMed  Google Scholar 

  61. Bjørbaek C, El-Haschimi K, Frantz JD, Flier JS (1999) The role of SOCS-3 in leptin signaling and leptin resistance. J Biol Chem 274(42):30059–30065

    PubMed  Google Scholar 

  62. Niswender KD, Morton GJ, Stearns WH, Rhodes CJ, Myers MG Jr, Schwartz MW (2001) Intracellular signalling. Key enzyme in leptin-induced anorexia. Nature 413(6858):794–795

    CAS  PubMed  Google Scholar 

  63. Ren D, Li M, Duan C, Rui L (2005) Identification of SH2-B as a key regulator of leptin sensitivity, energy balance, and body weight in mice. Cell Metab 2(2):95–104

    CAS  PubMed  Google Scholar 

  64. Plum L, Rother E, Münzberg H, Wunderlich FT, Morgan DA, Hampel B, Shanabrough M, Janoschek R, Könner AC, Alber J, Suzuki A, Krone W, Horvath TL, Rahmouni K, Brüning JC (2007) Enhanced leptin-stimulated Pi3k activation in the CNS promotes white adipose tissue transdifferentiation. Cell Metab 6(6):431–445

    CAS  PubMed  Google Scholar 

  65. Vanhaesebroeck B, Stephens L, Hawkins P (2012) PI3K signalling: the path to discovery and understanding. Nat Rev Mol Cell Biol 13(3):195–203

    CAS  PubMed  Google Scholar 

  66. Cota D, Proulx K, Smith KA, Kozma SC, Thomas G, Woods SC, Seeley RJ (2006) Hypothalamic mTOR signaling regulates food intake. Science 312(5775):927–930

    CAS  PubMed  Google Scholar 

  67. Cota D, Matter EK, Woods SC, Seeley RJ (2008) The role of hypothalamic mammalian target of rapamycin complex 1 signaling in diet-induced obesity. J Neurosci 28(28):7202–7208

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Dagon Y, Hur E, Zheng B, Wellenstein K, Cantley LC, Kahn BB (2012) p70S6 kinase phosphorylates AMPK on serine 491 to mediate leptin's effect on food intake. Cell Metab 16(1):104–112

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Kitamura T, Feng Y, Kitamura YI, Chua SC Jr, Xu AW, Barsh GS, Rossetti L, Accili D (2006) Forkhead protein FoxO1 mediates Agrp-dependent effects of leptin on food intake. Nat Med 12(5):534–540

    CAS  PubMed  Google Scholar 

  70. Kim MS, Pak YK, Jang PG, Namkoong C, Choi YS, Won JC, Kim KS, Kim SW, Kim HS, Park JY, Kim YB, Lee KU (2006) Role of hypothalamic Foxo1 in the regulation of food intake and energy homeostasis. Nat Neurosci 9(7):901–906

    CAS  PubMed  Google Scholar 

  71. Kim KW, Donato J Jr, Berglund ED, Choi YH, Kohno D, Elias CF, Depinho RA, Elmquist JK (2012) FOXO1 in the ventromedial hypothalamus regulates energy balance. J Clin Invest 122(7):2578–2589

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Plum L, Lin HV, Dutia R, Tanaka J, Aizawa KS, Matsumoto M, Kim AJ, Cawley NX, Paik JH, Loh YP, DePinho RA, Wardlaw SL, Accili D (2009) The obesity susceptibility gene Cpe links FoxO1 signaling in hypothalamic pro-opiomelanocortin neurons with regulation of food intake. Nat Med 15(10):1195–1201

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Yang G, Lim CY, Li C, Xiao X, Radda GK, Li C, Cao X, Han W (2009) FoxO1 inhibits leptin regulation of pro-opiomelanocortin promoter activity by blocking STAT3 interaction with specificity protein 1. J Biol Chem 284(6):3719–3727

    CAS  PubMed  Google Scholar 

  74. Zhao AZ, Shinohara MM, Huang D, Shimizu M, Eldar-Finkelman H, Krebs EG, Beavo JA, Bornfeldt KE (2000) Leptin induces insulin-like signaling that antagonizes cAMP elevation by glucagon in hepatocytes. J Biol Chem 275(15):11348–11354

    CAS  PubMed  Google Scholar 

  75. Zhao AZ, Huan JN, Gupta S, Pal R, Sahu A (2002) A phosphatidylinositol 3 kinase–phosphodiesterase 3B–cyclic AMP pathway in hypothalamic action of leptin on feeding. Nat Neurosci 5(8):727–728

    CAS  PubMed  Google Scholar 

  76. Sanders MJ, Ali ZS, Hegarty BD, Heath R, Snowden MA, Carling D (2007) Defining the mechanism of activation of AMP-activated protein kinase by the small molecule A-769662, a member of the thienopyridone family. J Biol Chem 282(45):32539–32548

    CAS  PubMed  Google Scholar 

  77. Mihaylova MM, Shaw RJ (2011) The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol 13(9):1016–1023

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Hardie DG, Ross FA, Hawley SA (2012) AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13(4):251–262

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Minokoshi Y, Alquier T, Furukawa N, Kim YB, Lee A, Xue B, Mu J, Foufelle F, Ferré P, Birnbaum MJ, Stuck BJ, Kahn BB (2004) AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 428(6982):569–574

    CAS  PubMed  Google Scholar 

  80. Merrill GF, Kurth EJ, Hardie DG, Winder WW (1997 Dec) AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Am J Phys 273(6 Pt 1):E1107–E1112

    CAS  Google Scholar 

  81. Obici S, Feng Z, Arduini A, Conti R, Rossetti L (2003) Inhibition of hypothalamic carnitine palmitoyltransferase-1 decreases food intake and glucose production. Nat Med 9(6):756–761

    CAS  PubMed  Google Scholar 

  82. Tanida M, Yamamoto N, Shibamoto T, Rahmouni K (2013) Involvement of hypothalamic AMP-activated protein kinase in leptin-induced sympathetic nerve activation. PLoS One 8(2):e56660

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Minokoshi Y, Kim YB, Peroni OD, Fryer LG, Müller C, Carling D, Kahn BB (2002) Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415(6869):339–343

    CAS  PubMed  Google Scholar 

  84. Ueyama E, Morikawa Y, Yasuda T, Senba E (2004) Attenuation of fasting-induced phosphorylation of mitogen-activated protein kinases (ERK/p38) in the mouse hypothalamus in response to refeeding. Neurosci Lett 371(1):40–44

    CAS  PubMed  Google Scholar 

  85. Rahmouni K, Sigmund CD, Haynes WG, Mark AL (2009) Hypothalamic ERK mediates the anorectic and thermogenic sympathetic effects of leptin. Diabetes 58(3):536–542

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Bjørbaek C, Buchholz RM, Davis SM, Bates SH, Pierroz DD, Gu H, Neel BG, Myers MG Jr, Flier JS (2001) Divergent roles of SHP-2 in ERK activation by leptin receptors. J Biol Chem 276(7):4747–4755

    PubMed  Google Scholar 

  87. Bouret SG, Draper SJ, Simerly RB (2004) Trophic action of leptin on hypothalamic neurons that regulate feeding. Science 304(5667):108–110

    CAS  PubMed  Google Scholar 

  88. Huang H, Kong D, Byun KH, Ye C, Koda S, Lee DH, Oh BC, Lee SW, Lee B, Zabolotny JM, Kim MS, Bjørbæk C, Lowell BB, Kim YB (2012) Rho-kinase regulates energy balance by targeting hypothalamic leptin receptor signaling. Nat Neurosci 15(10):1391–1398

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Qiu J, Fang Y, Rønnekleiv OK, Kelly MJ (2010) Leptin excites proopiomelanocortin neurons via activation of TRPC channels. J Neurosci 30(4):1560–1565

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Sohn JW, Oh Y, Kim KW, Lee S, Williams KW, Elmquist JK (2016) Leptin and insulin engage specific PI3K subunits in hypothalamic SF1 neurons. Mol Metab 5(8):669–679

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Williams KW, Sohn JW, Donato J Jr, Lee CE, Zhao JJ, Elmquist JK, Elias CF (2011) The acute effects of leptin require PI3K signaling in the hypothalamic ventral premammillary nucleus. J Neurosci 31(37):13147–13156

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Dhar M, Wayman GA, Zhu M, Lambert TJ, Davare MA, Appleyard SM (2014) Leptin-induced spine formation requires TrpC channels and the CaM kinase cascade in the hippocampus. J Neurosci 34(30):10022–10033

    PubMed  PubMed Central  Google Scholar 

  93. Ramadori G, Fujikawa T, Fukuda M, Anderson J, Morgan DA, Mostoslavsky R, Stuart RC, Perello M, Vianna CR, Nillni EA, Rahmouni K, Coppari R (2010) SIRT1 deacetylase in POMC neurons is required for homeostatic defenses against diet-induced obesity. Cell Metab 12(1):78–87

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Sasaki T, Kikuchi O, Shimpuku M, Susanti VY, Yokota-Hashimoto H, Taguchi R, Shibusawa N, Sato T, Tang L, Amano K, Kitazumi T, Kuroko M, Fujita Y, Maruyama J, Lee YS, Kobayashi M, Nakagawa T, Minokoshi Y, Harada A, Yamada M, Kitamura T (2014) Hypothalamic SIRT1 prevents age-associated weight gain by improving leptin sensitivity in mice. Diabetologia 57(4):819–831

    CAS  PubMed  Google Scholar 

  95. Ramadori G, Fujikawa T, Anderson J, Berglund ED, Frazao R, Michán S, Vianna CR, Sinclair DA, Elias CF, Coppari R (2011) SIRT1 deacetylase in SF1 neurons protects against metabolic imbalance. Cell Metab 14(3):301–312

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Kleinridders A, Lauritzen HP, Ussar S, Christensen JH, Mori MA, Bross P, Kahn CR (2013) Leptin regulation of Hsp60 impacts hypothalamic insulin signaling. J Clin Invest 123(11):4667–4680

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Märker T, Sell H, Zillessen P, Glöde A, Kriebel J, Ouwens DM, Pattyn P, Ruige J, Famulla S, Roden M, Eckel J, Habich C (2012) Heat shock protein 60 as a mediator of adipose tissue inflammation and insulin resistance. Diabetes 61(3):615–625

    PubMed  PubMed Central  Google Scholar 

  98. Schaaf CP, Gonzalez-Garay ML, Xia F, Potocki L, Gripp KW, Zhang B, Peters BA, McElwain MA, Drmanac R, Beaudet AL, Caskey CT, Yang Y (2013) Truncating mutations of MAGEL2 cause Prader-Willi phenotypes and autism. Nat Genet 45(11):1–11

    Google Scholar 

  99. Mercer RE, Michaelson SD, Chee MJ, Atallah TA, Wevrick R, Colmers WF (2013) Magel2 is required for leptin-mediated depolarization of POMC neurons in the hypothalamic arcuate nucleus in mice. PLoS Genet 9(1):e1003207

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Maillard J, Park S, Croizier S, Vanacker C, Cook JH, Prevot V, Tauber M, Bouret SG (2016) Loss of Magel2 impairs the development of hypothalamic Anorexigenic circuits. Hum Mol Genet 25(15):3208–3215

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Kim KW, Donato J Jr, Berglund ED, Choi YH, Kohno D, Elias CF, Depinho RA, Elmquist JK (2012) FOXO1 in the ventromedial hypothalamus regulates energy balance. J Clin Invest 122(7):2578–2589

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Dhillon H, Zigman JM, Ye C, Lee CE, McGovern RA, Tang V, Kenny CD, Christiansen LM, White RD, Edelstein EA, Coppari R, Balthasar N, Cowley MA, Chua S Jr, Elmquist JK, Lowell BB (2006) Leptin directly activates SF1 neurons in the VMH, and this action by leptin is required for normal body-weight homeostasis. Neuron 49(2):191–203

    CAS  PubMed  Google Scholar 

  103. Coutinho EA, Okamoto S, Ishikawa AW, Yokota S, Wada N, Hirabayashi T, Saito K, Sato T, Takagi K, Wang CC, Kobayashi K, Ogawa Y, Shioda S, Yoshimura Y, Minokoshi Y (2017) Activation of SF1 neurons in the ventromedial hypothalamus by DREADD technology increases insulin sensitivity in peripheral tissues. Diabetes 66(9):2372–2386

    CAS  PubMed  Google Scholar 

  104. Ren H, Orozco IJ, Su Y, Suyama S, Gutiérrez-Juárez R, Horvath TL, Wardlaw SL, Plum L, Arancio O, Accili D (2012) FoxO1 target Gpr17 activates AgRP neurons to regulate food intake. Cell 149(6):1314–1326

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Ren H, Cook JR, Kon N, Accili D (2015) Gpr17 in AgRP neurons regulates feeding and sensitivity to insulin and leptin. Diabetes 64(11):3670–3679

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Banno R, Zimmer D, De Jonghe BC, Atienza M, Rak K, Yang W, Bence KK (2010) PTP1B and SHP2 in POMC neurons reciprocally regulate energy balance in mice. J Clin Invest 120(3):720–734

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Zabolotny JM, Bence-Hanulec KK, Stricker-Krongrad A, Haj F, Wang Y, Minokoshi Y, Kim YB, Elmquist JK, Tartaglia LA, Kahn BB, Neel BG (2002) PTP1B regulates leptin signal transduction in vivo. Dev Cell 2(4):489–495

    CAS  PubMed  Google Scholar 

  108. Cheng A, Uetani N, Simoncic PD, Chaubey VP, Lee-Loy A, McGlade CJ, Kennedy BP, Tremblay ML (2002) Attenuation of leptin action and regulation of obesity by protein tyrosine phosphatase 1B. Dev Cell 2(4):497–503

    CAS  PubMed  Google Scholar 

  109. Rousso-Noori L, Knobler H, Levy-Apter E, Kuperman Y, Neufeld-Cohen A, Keshet Y, Akepati VR, Klinghoffer RA, Chen A, Elson A (2011) Protein tyrosine phosphatase epsilon affects body weight by downregulating leptin signaling in a phosphorylation-dependent manner. Cell Metab 13(5):562–572

    CAS  PubMed  Google Scholar 

  110. Nieto-Vazquez I, Fernández-Veledo S, de Alvaro C, Rondinone CM, Valverde AM, Lorenzo M (2007) Protein-tyrosine phosphatase 1B-deficient myocytes show increased insulin sensitivity and protection against tumor necrosis factor-alpha-induced insulin resistance. Diabetes 56(2):404–413

    CAS  PubMed  Google Scholar 

  111. Loh K, Fukushima A, Zhang X, Galic S, Briggs D, Enriori PJ, Simonds S, Wiede F, Reichenbach A, Hauser C, Sims NA, Bence KK, Zhang S, Zhang ZY, Kahn BB, Neel BG, Andrews ZB, Cowley MA, Tiganis T (2011) Elevated hypothalamic TCPTP in obesity contributes to cellular leptin resistance. Cell Metab 14(5):684–699

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Plum L, Ma X, Hampel B, Balthasar N, Coppari R, Münzberg H, Shanabrough M, Burdakov D, Rother E, Janoschek R, Alber J, Belgardt BF, Koch L, Seibler J, Schwenk F, Fekete C, Suzuki A, Mak TW, Krone W, Horvath TL, Ashcroft FM, Brüning JC (2006) Enhanced PIP3 signaling in POMC neurons causes KATP channel activation and leads to diet-sensitive obesity. J Clin Invest 116(7):1886–1901

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhang ZY, Dodd GT, Tiganis T (2015) Protein tyrosine phosphatases in hypothalamic insulin and leptin signaling. Trends Pharmacol Sci 36(10):661–674

    CAS  PubMed  Google Scholar 

  114. Claflin KE, Sandgren JA, Lambertz AM, Weidemann BJ, Littlejohn NK, Burnett CM, Pearson NA, Morgan DA, Gibson-Corley KN, Rahmouni K, Grobe JL (2017) Angiotensin AT1A receptors on leptin receptor–expressing cells control resting metabolism. J Clin Invest 127(4):1414–1424

    PubMed  PubMed Central  Google Scholar 

  115. Kim JG, Suyama S, Koch M, Jin S, Argente-Arizon P, Argente J, Liu ZW, Zimmer MR, Jeong JK, Szigeti-Buck K, Gao Y, Garcia-Caceres C, Yi CX, Salmaso N, Vaccarino FM, Chowen J, Diano S, Dietrich MO, Tschöp MH, Horvath TL (2014) Leptin signaling in astrocytes regulates hypothalamic neuronal circuits and feeding. Nat Neurosci 17(7):908–910

    CAS  PubMed  Google Scholar 

  116. Han YM, Kang GM, Byun K, Ko HW, Kim J, Shin MS, Kim HK, Gil SY, Yu JH, Lee B, Kim MS (2014) Leptin-promoted cilia assembly is critical for normal energy balance. J Clin Invest 124(5):2193–2197

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (No. 81471064, No. 81670779 and No. 81870590), the Beijing Municipal Natural Science Foundation (No. 7162097), the Peking University Research Foundation (No. BMU20140366), and the National Key Research and Development Program of China (2017YFC1700402).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruimao Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, J., Yang, X., Yu, S., Zheng, R. (2018). The Leptin Signaling. In: Wu, Q., Zheng, R. (eds) Neural Regulation of Metabolism. Advances in Experimental Medicine and Biology, vol 1090. Springer, Singapore. https://doi.org/10.1007/978-981-13-1286-1_7

Download citation

Publish with us

Policies and ethics