Skip to main content

Glial Regulation of Energy Metabolism

  • Chapter
  • First Online:
Neural Regulation of Metabolism

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1090))

Abstract

The major function of brain glial cells is to maintain a homeostatic milieu for neurons to work properly in response to a variety of environmental alterations. Recent studies have shown that glial cells in the hypothalamus, a brain center controlling homeostatic physiological functions, are essential for regulating energy metabolism in both physiological and pathological conditions. Astrocytes, tanycytes, and NG2-glia shuttle and/or sense key metabolic factors presented to the hypothalamus either directly, by glial metabolic enzymes, receptors, and transporters, or indirectly, by modulating the sensing ability of other types of hypothalamic cells. Astrocytes, tanycytes, and microglia are critically important in the development and maintenance of hypothalamic circuits regulating energy balance. Hypothalamic inflammation commonly associated with diet-induced obesity is manifested via hypothalamic reactive gliosis involving microglia and astrocytes, contributing to the correlated abnormal energy metabolism. Although many glial functions in energy metabolism remain to be fully elucidated, we are at the dawn of targeting glia-neuron interactions in the hypothalamus for therapeutic applications in metabolic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7:41–53

    Article  CAS  PubMed  Google Scholar 

  2. Alvarez-Bolado G, Paul FA, Blaess S (2012) Sonic hedgehog lineage in the mouse hypothalamus: from progenitor domains to hypothalamic regions. Neural Dev 7:4

    Article  PubMed  PubMed Central  Google Scholar 

  3. Alvarez JI, Katayama T, Prat A (2013) Glial influence on the blood brain barrier. Glia 61:1939–1958

    Article  PubMed  PubMed Central  Google Scholar 

  4. Andermann ML, Lowell BB (2017) Toward a wiring diagram understanding of appetite control. Neuron 95:757–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Andre C, Guzman-Quevedo O, Rey C, Remus-Borel J, Clark S, Castellanos-Jankiewicz A, Ladeveze E, Leste-Lasserre T, Nadjar A, Abrous DN et al (2017) Inhibiting microglia expansion prevents diet-induced hypothalamic and peripheral inflammation. Diabetes 66:908–919

    Article  CAS  PubMed  Google Scholar 

  6. Azevedo FA, Carvalho LR, Grinberg LT, Farfel JM, Ferretti RE, Leite RE, Jacob Filho W, Lent R, Herculano-Houzel S (2009) Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol 513:532–541

    Article  PubMed  Google Scholar 

  7. Baldwin KT, Eroglu C (2017) Molecular mechanisms of astrocyte-induced synaptogenesis. Curr Opin Neurobiol 45:113–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Balland E, Dam J, Langlet F, Caron E, Steculorum S, Messina A, Rasika S, Falluel-Morel A, Anouar Y, Dehouck B et al (2014) Hypothalamic tanycytes are an ERK-gated conduit for leptin into the brain. Cell Metab 19:293–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Barahona MJ, Llanos P, Recabal A, Escobar-Acuna K, Elizondo-Vega R, Salgado M, Ordenes P, Uribe E, Sepulveda FJ, Araneda RC et al (2018) Glial hypothalamic inhibition of GLUT2 expression alters satiety, impacting eating behavior. Glia 66:592–605

    Article  PubMed  Google Scholar 

  10. Barrett P, Ebling FJ, Schuhler S, Wilson D, Ross AW, Warner A, Jethwa P, Boelen A, Visser TJ, Ozanne DM et al (2007) Hypothalamic thyroid hormone catabolism acts as a gatekeeper for the seasonal control of body weight and reproduction. Endocrinology 148:3608–3617

    Article  CAS  PubMed  Google Scholar 

  11. Begega A, Cuesta M, Santin LJ, Rubio S, Astudillo A, Arias JL (1999) Unbiased estimation of the total number of nervous cells and volume of medial mammillary nucleus in humans. Exp Gerontol 34:771–782

    Article  CAS  PubMed  Google Scholar 

  12. Beggs S, Salter MW (2016) SnapShot: microglia in disease. Cell 165(5):1294–1294 e1291

    Article  CAS  PubMed  Google Scholar 

  13. Bergles DE, Roberts JD, Somogyi P, Jahr CE (2000) Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature 405:187–191

    Article  CAS  PubMed  Google Scholar 

  14. Birey F, Kloc M, Chavali M, Hussein I, Wilson M, Christoffel DJ, Chen T, Frohman MA, Robinson JK, Russo SJ et al (2015) Genetic and stress-induced loss of NG2 Glia triggers emergence of depressive-like behaviors through reduced secretion of FGF2. Neuron 88:941–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Blazquez C, Woods A, de Ceballos ML, Carling D, Guzman M (1999) The AMP-activated protein kinase is involved in the regulation of ketone body production by astrocytes. J Neurochem 73:1674–1682

    Article  CAS  PubMed  Google Scholar 

  16. Bolborea M, Dale N (2013) Hypothalamic tanycytes: potential roles in the control of feeding and energy balance. Trends Neurosci 36:91–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Buckman LB, Thompson MM, Lippert RN, Blackwell TS, Yull FE, Ellacott KL (2015) Evidence for a novel functional role of astrocytes in the acute homeostatic response to high-fat diet intake in mice. Mol Metab 4:58–63

    Article  CAS  PubMed  Google Scholar 

  18. Campbell JN, Macosko EZ, Fenselau H, Pers TH, Lyubetskaya A, Tenen D, Goldman M, Verstegen AM, Resch JM, McCarroll SA et al (2017) A molecular census of arcuate hypothalamus and median eminence cell types. Nat Neurosci 20:484–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chang Y, She ZG, Sakimura K, Roberts A, Kucharova K, Rowitch DH, Stallcup WB (2012) Ablation of NG2 proteoglycan leads to deficits in brown fat function and to adult onset obesity. PLoS One 7:e30637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen R, Wu X, Jiang L, Zhang Y (2017) Single-cell RNA-seq reveals hypothalamic cell diversity. Cell Rep 18:3227–3241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cheng L, Yu Y, Szabo A, Wu Y, Wang H, Camer D, Huang XF (2015) Palmitic acid induces central leptin resistance and impairs hepatic glucose and lipid metabolism in male mice. J Nutr Biochem 26:541–548

    Article  CAS  PubMed  Google Scholar 

  22. Choi SJ, Kim F, Schwartz MW, Wisse BE (2010) Cultured hypothalamic neurons are resistant to inflammation and insulin resistance induced by saturated fatty acids. Am J Physiol Endocrinol Metab 298:E1122–E1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Clasadonte J, Prevot V (2018) The special relationship: glia-neuron interactions in the neuroendocrine hypothalamus. Nat Rev Endocrinol 14:25–44

    Article  CAS  PubMed  Google Scholar 

  24. Collden G, Balland E, Parkash J, Caron E, Langlet F, Prevot V, Bouret SG (2015) Neonatal overnutrition causes early alterations in the central response to peripheral ghrelin. Mol Metab 4:15–24

    Article  CAS  PubMed  Google Scholar 

  25. Cowley MA, Smart JL, Rubinstein M, Cerdan MG, Diano S, Horvath TL, Cone RD, Low MJ (2001) Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411:480–484

    Article  CAS  PubMed  Google Scholar 

  26. Czupryn A, Zhou YD, Chen X, McNay D, Anderson MP, Flier JS, Macklis JD (2011) Transplanted hypothalamic neurons restore leptin signaling and ameliorate obesity in db/db mice. Science 334:1133–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Delgado R, Carlin A, Airaghi L, Demitri MT, Meda L, Galimberti D, Baron P, Lipton JM, Catania A (1998) Melanocortin peptides inhibit production of proinflammatory cytokines and nitric oxide by activated microglia. J Leukoc Biol 63:740–745

    Article  CAS  PubMed  Google Scholar 

  28. Dimou L, Gotz M (2014) Glial cells as progenitors and stem cells: new roles in the healthy and diseased brain. Physiol Rev 94:709–737

    Article  CAS  PubMed  Google Scholar 

  29. Djogo T, Robins SC, Schneider S, Kryzskaya D, Liu X, Mingay A, Gillon CJ, Kim JH, Storch KF, Boehm U et al (2016) Adult NG2-glia are required for median eminence-mediated leptin sensing and body weight control. Cell Metab 23:797–810

    Article  CAS  PubMed  Google Scholar 

  30. Douglass JD, Dorfman MD, Fasnacht R, Shaffer LD, Thaler JP (2017) Astrocyte IKKbeta/NF-kappaB signaling is required for diet-induced obesity and hypothalamic inflammation. Mol Metab 6:366–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ebling FJP, Lewis JE (2018) Tanycytes and hypothalamic control of energy metabolism. Glia 66:1176–1184

    Article  PubMed  Google Scholar 

  32. Elizondo-Vega R, Cortes-Campos C, Barahona MJ, Oyarce KA, Carril CA, Garcia-Robles MA (2015) The role of tanycytes in hypothalamic glucosensing. J Cell Mol Med 19:1471–1482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ferreira R, Santos T, Viegas M, Cortes L, Bernardino L, Vieira OV, Malva JO (2011) Neuropeptide Y inhibits interleukin-1beta-induced phagocytosis by microglial cells. J Neuroinflammation 8:169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Frayling C, Britton R, Dale N (2011) ATP-mediated glucosensing by hypothalamic tanycytes. J Physiol 589:2275–2286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Freeman MR (2005) Glial control of synaptogenesis. Cell 120:292–293

    Article  CAS  PubMed  Google Scholar 

  36. Fu T, Towers M, Placzek MA (2017) Fgf10(+) progenitors give rise to the chick hypothalamus by rostral and caudal growth and differentiation. Development 144:3278–3288

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Fuente-Martin E, Garcia-Caceres C, Granado M, de Ceballos ML, Sanchez-Garrido MA, Sarman B, Liu ZW, Dietrich MO, Tena-Sempere M, Argente-Arizon P et al (2012) Leptin regulates glutamate and glucose transporters in hypothalamic astrocytes. J Clin Invest 122:3900–3913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gao Y, Layritz C, Legutko B, Eichmann TO, Laperrousaz E, Moulle VS, Cruciani-Guglielmacci C, Magnan C, Luquet S, Woods SC et al (2017) Disruption of lipid uptake in astroglia exacerbates diet-induced obesity. Diabetes 66:2555–2563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gao Y, Ottaway N, Schriever SC, Legutko B, Garcia-Caceres C, de la Fuente E, Mergen C, Bour S, Thaler JP, Seeley RJ et al (2014) Hormones and diet, but not body weight, control hypothalamic microglial activity. Glia 62:17–25

    Article  PubMed  Google Scholar 

  40. Garcia-Caceres C, Fuente-Martin E, Burgos-Ramos E, Granado M, Frago LM, Barrios V, Horvath T, Argente J, Chowen JA (2011) Differential acute and chronic effects of leptin on hypothalamic astrocyte morphology and synaptic protein levels. Endocrinology 152:1809–1818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Garcia-Caceres C, Quarta C, Varela L, Gao Y, Gruber T, Legutko B, Jastroch M, Johansson P, Ninkovic J, Yi CX et al (2016) Astrocytic insulin signaling couples brain glucose uptake with nutrient availability. Cell 166:867–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gautron L, Elmquist JK, Williams KW (2015) Neural control of energy balance: translating circuits to therapies. Cell 161:133–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gibson EM, Purger D, Mount CW, Goldstein AK, Lin GL, Wood LS, Inema I, Miller SE, Bieri G, Zuchero JB et al (2014) Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science 344:1252304

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Gupta S, Knight AG, Gupta S, Keller JN, Bruce-Keller AJ (2012) Saturated long-chain fatty acids activate inflammatory signaling in astrocytes. J Neurochem 120:1060–1071

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Haan N, Goodman T, Najdi-Samiei A, Stratford CM, Rice R, El Agha E, Bellusci S, Hajihosseini MK (2013) Fgf10-expressing tanycytes add new neurons to the appetite/energy-balance regulating centers of the postnatal and adult hypothalamus. J Neurosci 33:6170–6180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Haddad-Tovolli R, Dragano NRV, Ramalho AFS, Velloso LA (2017) Development and function of the blood-brain barrier in the context of metabolic control. Front Neurosci 11:224

    Article  PubMed  PubMed Central  Google Scholar 

  47. Harry GJ, Kraft AD (2012) Microglia in the developing brain: a potential target with lifetime effects. Neurotoxicology 33:191–206

    Article  PubMed  PubMed Central  Google Scholar 

  48. Haydon PG, Carmignoto G (2006) Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev 86:1009–1031

    Article  CAS  PubMed  Google Scholar 

  49. Hofmann K, Lamberz C, Piotrowitz K, Offermann N, But D, Scheller A, Al-Amoudi A, Kuerschner L (2017) Tanycytes and a differential fatty acid metabolism in the hypothalamus. Glia 65:231–249

    Article  PubMed  Google Scholar 

  50. Jais A, Bruning JC (2017) Hypothalamic inflammation in obesity and metabolic disease. J Clin Invest 127:24–32

    Article  PubMed  PubMed Central  Google Scholar 

  51. Jais A, Solas M, Backes H, Chaurasia B, Kleinridders A, Theurich S, Mauer J, Steculorum SM, Hampel B, Goldau J et al (2016) Myeloid-cell-derived VEGF maintains brain glucose uptake and limits cognitive impairment in obesity. Cell 165:882–895

    Article  CAS  PubMed  Google Scholar 

  52. Karadottir R, Hamilton NB, Bakiri Y, Attwell D (2008) Spiking and nonspiking classes of oligodendrocyte precursor glia in CNS white matter. Nat Neurosci 11:450–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91:461–553

    Article  CAS  PubMed  Google Scholar 

  54. Kim JG, Suyama S, Koch M, Jin S, Argente-Arizon P, Argente J, Liu ZW, Zimmer MR, Jeong JK, Szigeti-Buck K et al (2014) Leptin signaling in astrocytes regulates hypothalamic neuronal circuits and feeding. Nat Neurosci 17:908–910

    Article  CAS  PubMed  Google Scholar 

  55. Kimelberg HK, Nedergaard M (2010) Functions of astrocytes and their potential as therapeutic targets. Neurotherapeutics 7:338–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kleinridders A, Schenten D, Konner AC, Belgardt BF, Mauer J, Okamura T, Wunderlich FT, Medzhitov R, Bruning JC (2009) MyD88 signaling in the CNS is required for development of fatty acid-induced leptin resistance and diet-induced obesity. Cell Metab 10:249–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kokoeva MV, Yin H, Flier JS (2005) Neurogenesis in the hypothalamus of adult mice: potential role in energy balance. Science 310:679–683

    Article  CAS  PubMed  Google Scholar 

  58. Lambertsen KL, Clausen BH, Babcock AA, Gregersen R, Fenger C, Nielsen HH, Haugaard LS, Wirenfeldt M, Nielsen M, Dagnaes-Hansen F et al (2009) Microglia protect neurons against ischemia by synthesis of tumor necrosis factor. J Neurosci 29:1319–1330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Langlet F, Levin BE, Luquet S, Mazzone M, Messina A, Dunn-Meynell AA, Balland E, Lacombe A, Mazur D, Carmeliet P et al (2013) Tanycytic VEGF-A boosts blood-hypothalamus barrier plasticity and access of metabolic signals to the arcuate nucleus in response to fasting. Cell Metab 17:607–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Le Foll C, Dunn-Meynell A, Musatov S, Magnan C, Levin BE (2013) FAT/CD36: a major regulator of neuronal fatty acid sensing and energy homeostasis in rats and mice. Diabetes 62:2709–2716

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Le Foll C, Dunn-Meynell AA, Miziorko HM, Levin BE (2014) Regulation of hypothalamic neuronal sensing and food intake by ketone bodies and fatty acids. Diabetes 63:1259–1269

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Lee DA, Bedont JL, Pak T, Wang H, Song J, Miranda-Angulo A, Takiar V, Charubhumi V, Balordi F, Takebayashi H et al (2012) Tanycytes of the hypothalamic median eminence form a diet-responsive neurogenic niche. Nat Neurosci 15:700–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lee JY, Ye J, Gao Z, Youn HS, Lee WH, Zhao L, Sizemore N, Hwang DH (2003) Reciprocal modulation of Toll-like receptor-4 signaling pathways involving MyD88 and phosphatidylinositol 3-kinase/AKT by saturated and polyunsaturated fatty acids. J Biol Chem 278:37041–37051

    Article  CAS  PubMed  Google Scholar 

  64. Leloup C, Allard C, Carneiro L, Fioramonti X, Collins S, Penicaud L (2016) Glucose and hypothalamic astrocytes: more than a fueling role? Neuroscience 323:110–120

    Article  CAS  PubMed  Google Scholar 

  65. Levin BE, Magnan C, Dunn-Meynell A, Le Foll C (2011) Metabolic sensing and the brain: who, what, where, and how? Endocrinology 152:2552–2557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Li J, Tang Y, Cai D (2012) IKKbeta/NF-kappaB disrupts adult hypothalamic neural stem cells to mediate a neurodegenerative mechanism of dietary obesity and pre-diabetes. Nat Cell Biol 14:999–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Liddelow S, Barres B (2015) SnapShot: astrocytes in health and disease. Cell 162:1170–1170 e1171

    Article  CAS  PubMed  Google Scholar 

  68. Marina N, Turovsky E, Christie IN, Hosford PS, Hadjihambi A, Korsak A, Ang R, Mastitskaya S, Sheikhbahaei S, Theparambil SM et al (2018) Brain metabolic sensing and metabolic signaling at the level of an astrocyte. Glia 66:1185–1199

    Article  PubMed  Google Scholar 

  69. Marino JS, Xu Y, Hill JW (2011) Central insulin and leptin-mediated autonomic control of glucose homeostasis. Trends Endocrinol Metab 22:275–285

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Marsters CM, Rosin JM, Thornton HF, Aslanpour S, Klenin N, Wilkinson G, Schuurmans C, Pittman QJ, Kurrasch DM (2016) Oligodendrocyte development in the embryonic tuberal hypothalamus and the influence of Ascl1. Neural Dev 11:20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. McNay DE, Briancon N, Kokoeva MV, Maratos-Flier E, Flier JS (2012) Remodeling of the arcuate nucleus energy-balance circuit is inhibited in obese mice. J Clin Invest 122:142–152

    Article  CAS  PubMed  Google Scholar 

  72. Milanski M, Degasperi G, Coope A, Morari J, Denis R, Cintra DE, Tsukumo DM, Anhe G, Amaral ME, Takahashi HK et al (2009) Saturated fatty acids produce an inflammatory response predominantly through the activation of TLR4 signaling in hypothalamus: implications for the pathogenesis of obesity. J Neurosci 29:359–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Morari J, Anhe GF, Nascimento LF, de Moura RF, Razolli D, Solon C, Guadagnini D, Souza G, Mattos AH, Tobar N et al (2014) Fractalkine (CX3CL1) is involved in the early activation of hypothalamic inflammation in experimental obesity. Diabetes 63:3770–3784

    Article  CAS  PubMed  Google Scholar 

  74. Myers MG Jr, Olson DP (2012) Central nervous system control of metabolism. Nature 491:357–363

    Article  CAS  PubMed  Google Scholar 

  75. Orellana JA, Saez PJ, Cortes-Campos C, Elizondo RJ, Shoji KF, Contreras-Duarte S, Figueroa V, Velarde V, Jiang JX, Nualart F et al (2012) Glucose increases intracellular free Ca(2+) in tanycytes via ATP released through connexin 43 hemichannels. Glia 60:53–68

    Article  PubMed  Google Scholar 

  76. Parsons MP, Hirasawa M (2010) ATP-sensitive potassium channel-mediated lactate effect on orexin neurons: implications for brain energetics during arousal. J Neurosci 30:8061–8070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A 91:10625–10629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pierce AA, Xu AW (2010) De novo neurogenesis in adult hypothalamus as a compensatory mechanism to regulate energy balance. J Neurosci 30:723–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Prinz M, Priller J (2014) Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci 15:300–312

    Article  CAS  PubMed  Google Scholar 

  80. Rahman MH, Bhusal A, Lee WH, Lee IK, Suk K (2018) Hypothalamic inflammation and malfunctioning glia in the pathophysiology of obesity and diabetes: translational significance. Biochem Pharmacol 153:123–133

    Article  CAS  PubMed  Google Scholar 

  81. Ransohoff RM, Brown MA (2012) Innate immunity in the central nervous system. J Clin Invest 122:1164–1171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Reis WL, Yi CX, Gao Y, Tschop MH, Stern JE (2015) Brain innate immunity regulates hypothalamic arcuate neuronal activity and feeding behavior. Endocrinology 156:1303–1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rivera-Aponte DE, Mendez-Gonzalez MP, Rivera-Pagan AF, Kucheryavykh YV, Kucheryavykh LY, Skatchkov SN, Eaton MJ (2015) Hyperglycemia reduces functional expression of astrocytic Kir4.1 channels and glial glutamate uptake. Neuroscience 310:216–223

    Article  CAS  PubMed  Google Scholar 

  84. Rivers LE, Young KM, Rizzi M, Jamen F, Psachoulia K, Wade A, Kessaris N, Richardson WD (2008) PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice. Nat Neurosci 11:1392–1401

    Article  CAS  PubMed  Google Scholar 

  85. Roberts DE, Killiany RJ, Rosene DL (2012) Neuron numbers in the hypothalamus of the normal aging rhesus monkey: stability across the adult lifespan and between the sexes. J Comp Neurol 520:1181–1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Robins S, Kokoeva M (2018) Ng2-Glia, a new player in energy balance. Neuroendocrinology. https://doi.org/10.1159/000488111

    Article  CAS  PubMed  Google Scholar 

  87. Robins SC, Stewart I, McNay DE, Taylor V, Giachino C, Goetz M, Ninkovic J, Briancon N, Maratos-Flier E, Flier JS et al (2013a) alpha-Tanycytes of the adult hypothalamic third ventricle include distinct populations of FGF-responsive neural progenitors. Nat Commun 4:2049

    Article  CAS  PubMed  Google Scholar 

  88. Robins SC, Villemain A, Liu X, Djogo T, Kryzskaya D, Storch KF, Kokoeva MV (2013b) Extensive regenerative plasticity among adult NG2-glia populations is exclusively based on self-renewal. Glia 61:1735–1747

    Article  PubMed  Google Scholar 

  89. Rodriguez EM, Blazquez JL, Pastor FE, Pelaez B, Pena P, Peruzzo B, Amat P (2005) Hypothalamic tanycytes: a key component of brain-endocrine interaction. Int Rev Cytol 247:89–164

    Article  CAS  PubMed  Google Scholar 

  90. Sahara S, O’Leary DD (2009) Fgf10 regulates transition period of cortical stem cell differentiation to radial glia controlling generation of neurons and basal progenitors. Neuron 63:48–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sakry D, Neitz A, Singh J, Frischknecht R, Marongiu D, Biname F, Perera SS, Endres K, Lutz B, Radyushkin K et al (2014) Oligodendrocyte precursor cells modulate the neuronal network by activity-dependent ectodomain cleavage of glial NG2. PLoS Biol 12:e1001993

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Salter MW, Beggs S (2014) Sublime microglia: expanding roles for the guardians of the CNS. Cell 158:15–24

    Article  CAS  PubMed  Google Scholar 

  93. Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, Ransohoff RM, Greenberg ME, Barres BA, Stevens B (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74:691–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Shen L, Tso P, Wang DQ, Woods SC, Davidson WS, Sakai R, Liu M (2009) Up-regulation of apolipoprotein E by leptin in the hypothalamus of mice and rats. Physiol Behav 98:223–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Shen L, Tso P, Woods SC, Clegg DJ, Barber KL, Carey K, Liu M (2008) Brain apolipoprotein E: an important regulator of food intake in rats. Diabetes 57:2092–2098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Shen Y, Qin H, Chen J, Mou L, He Y, Yan Y, Zhou H, Lv Y, Chen Z, Wang J et al (2016) Postnatal activation of TLR4 in astrocytes promotes excitatory synaptogenesis in hippocampal neurons. J Cell Biol 215:719–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sierra A, Abiega O, Shahraz A, Neumann H (2013) Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis. Front Cell Neurosci 7:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Simpson IA, Appel NM, Hokari M, Oki J, Holman GD, Maher F, Koehler-Stec EM, Vannucci SJ, Smith QR (1999) Blood-brain barrier glucose transporter: effects of hypo- and hyperglycemia revisited. J Neurochem 72:238–247

    Article  CAS  PubMed  Google Scholar 

  99. Song BJ, Elbert A, Rahman T, Orr SK, Chen CT, Febbraio M, Bazinet RP (2010) Genetic ablation of CD36 does not alter mouse brain polyunsaturated fatty acid concentrations. Lipids 45:291–299

    Article  CAS  PubMed  Google Scholar 

  100. Steinbusch L, Labouebe G, Thorens B (2015) Brain glucose sensing in homeostatic and hedonic regulation. Trends Endocrinol Metab 26:455–466

    Article  CAS  PubMed  Google Scholar 

  101. Steinmetz CC, Turrigiano GG (2010) Tumor necrosis factor-alpha signaling maintains the ability of cortical synapses to express synaptic scaling. J Neurosci 30:14685–14690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sternson SM (2013) Hypothalamic survival circuits: blueprints for purposive behaviors. Neuron 77:810–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sternson SM, Eiselt AK (2017) Three pillars for the neural control of appetite. Annu Rev Physiol 79:401–423

    Article  CAS  PubMed  Google Scholar 

  104. Thaler JP, Yi CX, Schur EA, Guyenet SJ, Hwang BH, Dietrich MO, Zhao X, Sarruf DA, Izgur V, Maravilla KR et al (2012) Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest 122:153–162

    Article  CAS  PubMed  Google Scholar 

  105. Theodosis DT, Poulain DA, Oliet SH (2008) Activity-dependent structural and functional plasticity of astrocyte-neuron interactions. Physiol Rev 88:983–1008

    Article  CAS  PubMed  Google Scholar 

  106. Valdearcos M, Douglass JD, Robblee MM, Dorfman MD, Stifler DR, Bennett ML, Gerritse I, Fasnacht R, Barres BA, Thaler JP et al (2017) Microglial inflammatory signaling orchestrates the hypothalamic immune response to dietary excess and mediates obesity susceptibility. Cell Metab 26:185–197 e183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Valdearcos M, Robblee MM, Benjamin DI, Nomura DK, Xu AW, Koliwad SK (2014) Microglia dictate the impact of saturated fat consumption on hypothalamic inflammation and neuronal function. Cell Rep 9:2124–2138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Valdearcos M, Xu AW, Koliwad SK (2015) Hypothalamic inflammation in the control of metabolic function. Annu Rev Physiol 77:131–160

    Article  CAS  PubMed  Google Scholar 

  109. Vannucci SJ, Simpson IA (2003) Developmental switch in brain nutrient transporter expression in the rat. Am J Physiol Endocrinol Metab 285:E1127–E1134

    Article  CAS  PubMed  Google Scholar 

  110. VerkhratskiÄ­ AN, Butt A (2013) Glial physiology and pathophysiology. Wiley-Blackwell, Chichester/Hoboken

    Book  Google Scholar 

  111. Wake H, Lee PR, Fields RD (2011) Control of local protein synthesis and initial events in myelination by action potentials. Science 333:1647–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Xu Y, Tamamaki N, Noda T, Kimura K, Itokazu Y, Matsumoto N, Dezawa M, Ide C (2005) Neurogenesis in the ependymal layer of the adult rat 3rd ventricle. Exp Neurol 192:251–264

    Article  CAS  PubMed  Google Scholar 

  113. Yamauchi T, Tatsumi K, Makinodan M, Kimoto S, Toritsuka M, Okuda H, Kishimoto T, Wanaka A (2010) Olanzapine increases cell mitotic activity and oligodendrocyte-lineage cells in the hypothalamus. Neurochem Int 57:565–571

    Article  CAS  PubMed  Google Scholar 

  114. Yan J, Zhang H, Yin Y, Li J, Tang Y, Purkayastha S, Li L, Cai D (2014) Obesity- and aging-induced excess of central transforming growth factor-beta potentiates diabetic development via an RNA stress response. Nat Med 20:1001–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Yang L, Qi Y, Yang Y (2015) Astrocytes control food intake by inhibiting AGRP neuron activity via adenosine A1 receptors. Cell Rep 11:798–807

    Article  CAS  PubMed  Google Scholar 

  116. Young KM, Psachoulia K, Tripathi RB, Dunn SJ, Cossell L, Attwell D, Tohyama K, Richardson WD (2013) Oligodendrocyte dynamics in the healthy adult CNS: evidence for myelin remodeling. Neuron 77:873–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zawadzka M, Rivers LE, Fancy SP, Zhao C, Tripathi R, Jamen F, Young K, Goncharevich A, Pohl H, Rizzi M et al (2010) CNS-resident glial progenitor/stem cells produce Schwann cells as well as oligodendrocytes during repair of CNS demyelination. Cell Stem Cell 6:578–590

    Article  CAS  PubMed  Google Scholar 

  118. Zhang Y, Reichel JM, Han C, Zuniga-Hertz JP, Cai D (2017) Astrocytic process plasticity and IKKbeta/NF-kappaB in central control of blood glucose, blood pressure, and body weight. Cell Metab 25:1091–1102 e1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhang Y, Sloan SA, Clarke LE, Caneda C, Plaza CA, Blumenthal PD, Vogel H, Steinberg GK, Edwards MS, Li G et al (2016) Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse. Neuron 89:37–53

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Dong Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhou, YD. (2018). Glial Regulation of Energy Metabolism. In: Wu, Q., Zheng, R. (eds) Neural Regulation of Metabolism. Advances in Experimental Medicine and Biology, vol 1090. Springer, Singapore. https://doi.org/10.1007/978-981-13-1286-1_6

Download citation

Publish with us

Policies and ethics