Skip to main content

Improved Convolutional Neural Networks for Hyperspectral Image Classification

  • Conference paper
  • First Online:
Recent Developments in Machine Learning and Data Analytics

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 740))

Abstract

Classification is the process of setting class labels to pixels based on some obtained properties. Hyperspectral images (HSI) have very high dimensionality, which results in higher cost and complexity for analyzing and classifying them as superfast processors and large storage devices are required. Moreover, due to limited training samples and labeled data, classification remains an arduous task. Many methods have been presented till now for classification of HSI based on traditional methods that use handcrafted features beforehand, principal component analysis and its variations, decision trees, random forests, SVM-based methods, and neural networks, but most of these consider only the spectral information for classification resulting in low classification accuracy. Nowadays, increasing spatial resolution of HSI demands obtaining spatial data for further improving classification performance. We, therefore, present a classification method which obtains spectral as well as spatial features using convolutional neural network (CNN) model and then a logistic regression (LR) classifier that uses the activation function softmax for predicting classification results. Our proposed method is compared with considered techniques and tests on HSIs, namely, Indian pines and Pavia University, which have shown better performance regarding parameters such as overall accuracy (OA), average accuracy (AA), and kappa coefficient (K).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Donoho, D.L.: High-dimensional data analysis: the curses and blessings of dimensionality. AMS Math Challenges Lect 13, 178–183 (2000)

    Google Scholar 

  2. Samaniego, L., Bardossy, A., Schulz, K.: Supervised classification of remotely sensed imagery using a modified, k-NN technique. IEEE Trans. Geo. Rem. Sens. 46, 2112–2125 (2008)

    Article  Google Scholar 

  3. Ediriwickrema, J., Khorram, S.: Hierarchical maximum-likelihood classification for improved accuracies. IEEE Trans. Geo. Rem. Sens. 35, 810–816 (1997)

    Article  Google Scholar 

  4. Li, J., Dias, J.M.B., Plaza, A.: Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning. IEEE Trans. Geo. Rem. Sens. 48(10), 4085–4098 (2010)

    Google Scholar 

  5. Rodarmel, C., Shan, J.: Principal component analysis for hyperspectral image classification. Surveying Land Inf. Sys. 62(2), 115 (2002)

    Google Scholar 

  6. Robila, S.A., Varshney, P.K.: Feature extraction from hyperspectral data using ICA. In: Advanced Image Processing Techniques for Remotely Sensed Hyperspectral Data, pp. 199–216 (2004)

    Google Scholar 

  7. Melganiand, F., Bruzzone, L.: Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geo. Rem. Sens. 42(8), 1778–1790 (2004)

    Article  Google Scholar 

  8. Ghamisi, P., Mura, M.D., Benediktsson, J.A.: A survey on spectral–spatial classification techniques based on attribute profiles. IEEE Trans. Geo. Rem. Sens. 53, 2335–2353 (2015)

    Article  Google Scholar 

  9. Tuia, D., Volpi, M., Mura, M.D., Rakotomamonjy, A., Flamary, R.: Automatic feature learning for spatio-spectral image classification with sparse SVM. IEEE Trans. Geo. Rem. Sens. 52(10), 6062–6074 (2014)

    Article  Google Scholar 

  10. Jia, S., Zhang, X., Li, Q.: Spectral–spatial hyperspectral image classification using regularized low-rank representation and sparse representation-based graph cuts. IEEE J. Sel. Topics App. Earth Obs. Rem. Sens. 8, 2473–2484 (2015)

    Article  Google Scholar 

  11. Mura, M.D., Villa, A., Benediktsson, J.A., Chanussot, J., Bruzzone, L.: Classification of hyperspectral images by using extended morphological attribute profiles and independent component analysis. IEEE Trans. Geo. Rem. Sens. Letters 8, 542–546 (2011)

    Article  Google Scholar 

  12. Shen, L., Jia, S.: Three-dimensional Gabor wavelets for pixel-based hyperspectral imagery classification. IEEE Trans. Geo. Rem. Sens. 49(12), 5039–5046 (2011)

    Article  Google Scholar 

  13. Qian, Y., Ye, M., Zhou, J.: Hyperspectral image classification based on structured sparse logistic regression and three-dimensional wavelet texture features. IEEE Trans. Geo. Rem. Sens. 51, 2276–2291 (2013)

    Article  Google Scholar 

  14. Chen, Y., Lin, Z., Zhao, X., Wang, G., Gu, Y.: Deep learning-based classification of hyperspectral data. IEEE J. Sel. Topics App. Earth Obs. Rem. Sens. 7(6), 2094–2107 (2014)

    Article  Google Scholar 

  15. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Chen, Y., Zhao, X., Jia, X.: Spectral–spatial classification of hyperspectral data based on deep belief network. IEEE J. Sel. Topics App. Earth Obs. Rem. Sens. 8(6), 1–12 (2015)

    Article  Google Scholar 

  17. Yue, J., Zhao, W., Mao, S., Liu, H.: Spectral–spatial classification of hyperspectral images using deep convolutional neural networks. Rem. Sens. Lett. 6(6), 468–477 (2015)

    Article  Google Scholar 

  18. Makantasis, K., Karantzalos, K., Doulamis, A., Doulamis, N.: Deep supervised learning for hyperspectral data classification using convolutional neural networks. In: IEEE International Geoscience and Remote Sensing Symposium, pp. 4959–4962 (2015)

    Google Scholar 

  19. Liang, H., Li, Q.: Hyperspectral imagery classification using sparse representations of convolutional neural network features. Rem. Sens. 8(2), 99 (2016)

    Article  MathSciNet  Google Scholar 

  20. Yue, J., Mao, S., Li, M.: A deep learning framework for hyperspectral image classification using spatial pyramid pooling. Rem. Sens. Lett. 7(9), 875–884 (2016)

    Article  Google Scholar 

  21. Chen, Y., Jiang, H., Li, C., Jia, X., Ghamisi, P.: Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geo. Rem. Sens. 54(10), 6232–6251 (2016)

    Article  Google Scholar 

  22. Zhang, H., Li, Y., Zhang, Y., Shen, Q.: Spectral-spatial classification of hyperspectral imagery using a dual-channel convolutional neural network. Rem. Sens. Lett. 8(5), 438–447 (2017)

    Article  Google Scholar 

  23. Zabalza, J., Ren, J., Yang, M., Zhang, Y., Wang, J., Marshall, S., Han, J.: Novel folded-PCA for improved feature extraction and data reduction with hyperspectral imaging and SAR in remote sensing. ISPRS J. Photogrammetry Rem. Sens. 93, 112–122 (2014)

    Article  Google Scholar 

  24. Setiyoko, A., Dharma I.G.W.S., Haryanto, T.: Recent development of feature extraction and classification hyperspectral images: a systematic literature review. J. Phys.: Conf. Ser. 801(1) (2017)

    Google Scholar 

  25. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: 30th International Conference on Machine Learning, p. 28 (2013)

    Google Scholar 

  26. Memisevic, R., Zach, C., Hinton, G., Pollefeys, M.: Gated softmax classification. In: Advances in Neural Information Processing Systems, p. 23 (2010)

    Google Scholar 

  27. Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)

    MathSciNet  MATH  Google Scholar 

  28. http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashanka Kalita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kalita, S., Biswas, M. (2019). Improved Convolutional Neural Networks for Hyperspectral Image Classification. In: Kalita, J., Balas, V., Borah, S., Pradhan, R. (eds) Recent Developments in Machine Learning and Data Analytics. Advances in Intelligent Systems and Computing, vol 740. Springer, Singapore. https://doi.org/10.1007/978-981-13-1280-9_37

Download citation

Publish with us

Policies and ethics