Skip to main content

An Approach for Temporal Ordering of Medical Case Reports

  • Conference paper
  • First Online:
Data Management, Analytics and Innovation

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 839))

  • 1272 Accesses

Abstract

Temporal ordering is important in deducing time sequence of medical events in biomedical text and has significant application in summarization, narrative generation, and information extraction tasks. We attempt temporal ordering of events in medical case reports. Our approach is deterministic in extracting explicit temporal expressions and probabilistic in extracting implicit boundaries. We introduce event context as a set of features to learn a CRF model. We achieve F1 score of 0.78 in detecting boundaries. We apply rule-based normalization and ordering of identified temporal expressions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pustejovsky, J., Hanks, P., Sauri, R., See, A., Gaizauskas, R., Setzer, A., et al. (2003). The Timebank corpus. In Corpus linguistics (p. 40). Lancaster, UK.

    Google Scholar 

  2. Bramsen, P., Deshpande, P., Lee, Y. K., & Barzilay, R. (2006). Inducing temporal graphs. In Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing (pp. 189–198). Association for Computational Linguistics.

    Google Scholar 

  3. Cheng, Y., Anick, P., Hong, P., & Xue, N. (2013). Temporal relation discovery between events and temporal expressions identified in clinical narrative. Journal of Biomedical Informatics, 46, S48–S53.

    Article  Google Scholar 

  4. Jindal, P., & Roth, D. (2013). Extraction of events and temporal expressions from clinical narratives. Journal of Biomedical Informatics, 46, S13–S19.

    Article  Google Scholar 

  5. Xu, Y., Wang, Y., Liu, T., Tsujii, J., & Chang, E. I.-C. (2013). An end-to-end system to identify temporal relation in discharge summaries: 2012 i2b2 challenge. Journal of the American Medical Informatics Association, 20(5):849–858.

    Google Scholar 

  6. Nikfarjam, A., Emadzadeh, E., & Gonzalez, G. (2013). Towards generating a patient’s timeline: Extracting temporal relationships from clinical notes. Journal of Biomedical Informatics, 46, S40–S47.

    Article  Google Scholar 

  7. Chang, Y.-C., Dai, H.-J., Wu, J. C.-Y., Chen, J.-M., Tsai, R. T.-H., & Hsu, W.-L. (2013). Tempting system: A hybrid method of rule and machine learning for temporal relation extraction in patient discharge summaries. Journal of Biomedical Informatics, 46, S54–S62.

    Article  Google Scholar 

  8. Raghavan, P., Fosler-Lussier, E., & Lai, A. M. (2012). Temporal classification of medical events. In Proceedings of the 2012 Workshop on Biomedical Natural Language Processing (pp. 29–37). Association for Computational Linguistics.

    Google Scholar 

  9. Strötgen, J., & Gertz, M. (2010). Heideltime: High quality rule-based extraction and normalization of temporal expressions. In Proceedings of the 5th International Workshop on Semantic Evaluation (pp. 321–324). Association for Computational Linguistics.

    Google Scholar 

  10. Bird, S. (2006). Nltk: The natural language toolkit. In Proceedings of the COLING/ACL on Interactive Presentation Sessions (pp. 69–72). Association for Computational Linguistics.

    Google Scholar 

  11. Bodenreider, O. (2004). The unified medical language system (UMLS): Integrating biomedical terminology. Nucleic Acids Research, 32(suppl 1), D267–D270.

    Article  Google Scholar 

  12. Brown, E. G., Wood, L., & Wood, S. (1999). The medical dictionary for regulatory activities (MedDRA). Drug Safety, 20(2), 109–117.

    Article  Google Scholar 

  13. Murphy, K. P. (2006). Naive Bayes classifiers. University of British Columbia.

    Google Scholar 

  14. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.

    MATH  Google Scholar 

  15. Kudo, T. (2005). Crf++: Yet another CRF toolkit. Software available at http://crfpp.sourceforge.net.

  16. Lafferty, J., McCallum, A., & Pereira, F. C. (2001). Conditional random fields: Probabilistic models for segmenting and labeling sequence data.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajdeep Sarkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sarkar, R., Nayal, B., Joshi, A. (2019). An Approach for Temporal Ordering of Medical Case Reports. In: Balas, V., Sharma, N., Chakrabarti, A. (eds) Data Management, Analytics and Innovation. Advances in Intelligent Systems and Computing, vol 839. Springer, Singapore. https://doi.org/10.1007/978-981-13-1274-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1274-8_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1273-1

  • Online ISBN: 978-981-13-1274-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics