Skip to main content

Mimicking Integrated Functions of “Molecular Space” in Biological Systems by Using Crystalline Cavities Consisting of Short Peptides

  • Chapter
  • First Online:
Book cover Designed Molecular Space in Material Science and Catalysis

Abstract

The intelligent use of “molecular space” is an important feature of biological functions, such as selective or efficient catalysis, molecular transfer, accurate molecular recognition, etc. Peptides provide various types of “molecular space” due to the varietyof functional groups and highly ordered structure, in which integrated functions are demonstrated, supported by, in some cases, adaptable structrual changes (such as induced fit) becasuse of their structural flexibility. In addition, correlation of several types of “molecular space,” through cooperative structural changes in the peptide framework, is key for environmental responsive functions of biological systems. These features of peptides could be applied to artificial systems in the design of functional solid materials. Crystalline materials are one of the easiest approaches to construct materials consisting of several units which correlate each other due to the structural regularity. Thus, until now, various crystalline nano-cavities (as was “molecular space”) consisting of short peptide moieties (hereafter “peptide crystalline nano-cavities”) have been reported, showing their potential for the design of artificial crystalline nano-cavities. Various features of biological systems, such as design properties and adaptable properties (such as induced fit), have been successfully mimicked in reported systems. Recently, dynamic features such as cooperative bindings have also been demonstrated using peptide crystalline cavities. These features could lead to catalysis supported by selective or efficient molecular capture as was “molecular space” in enzyme in near future. In this review, recent developments of peptide crystalline nano-cavities are overviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.R. Ghadiri, J.R. Granja, R.A. Milligan, D.E. McRee, N. Khazanovich, Nature 366, 324 (1993)

    Article  CAS  Google Scholar 

  2. J.R. Granja, M.R. Ghadiri, J. Am. Chem. Soc. 116, 10785 (1994)

    Article  CAS  Google Scholar 

  3. M.R. Ghadiri, K. Kobayashi, J.R. Granja, R.K. Chadha, D.E. McRee, Angew. Chem. Int. Ed. 34, 93 (1995)

    Article  CAS  Google Scholar 

  4. M. Amorín, L. Castedo, J.R. Granja, J. Am. Chem. Soc. 125, 2844 (2003)

    Article  Google Scholar 

  5. M. Amorín, L. Castedo, J.R. Granja, Chem. Eur. J. 11, 6539 (2005)

    Article  Google Scholar 

  6. R.J. Brea, L. Castedo, J.R. Granja, Chem. Commun. 31, 3267 (2007)

    Article  Google Scholar 

  7. M. Amorín, L. Castedo, J.R. Granja, Chem. Eur. J. 14, 2100 (2008)

    Article  Google Scholar 

  8. C.H. Görbitz, Chem. Eur. J. 13, 1022 (2007) and reference therein

    Article  Google Scholar 

  9. A. Comotti, S. Bracco, G. Distefano, P. Sozzani, Chem. Commun., 284 (2009)

    Google Scholar 

  10. D.V. Soldatov, I.L. Moudrakovski, J.A. Ripmeester, Angew. Chem. Int. Ed. 43, 6308 (2004)

    Article  CAS  Google Scholar 

  11. D.V. Soldatov, I.L. Moudrakovski, E.V. Grachev, J.A. Ripmeester, J. Am. Chem. Soc. 128, 6737 (2006)

    Article  CAS  Google Scholar 

  12. V.N. Yadav, A. Comotti, P. Sozzani, S. Bracco, T. Bonge-Hansen, M. Hennum, C.H. Görbitz, Angew. Chem. Int. Ed. 54, 15684 (2015)

    Article  Google Scholar 

  13. G. Distefano, A. Comotti, S. Bracco, M. Beretta, P. Sozzani, Angew. Chem. Int. Ed. 51, 9258 (2012)

    Article  CAS  Google Scholar 

  14. J. Rabone, Y.-F. Yue, S.Y. Chong, K.C. Stylianou, J. Bacsa, D. Bradshaw, G.R. Darling, N.G. Berry, Y.Z. Khimyak, A.Y. Ganin, P. Wiper, J.B. Claridge, M.J. Rosseinsky, Science 329, 1053 (2010)

    Article  CAS  Google Scholar 

  15. A.P. Katsoulidis, K.S. Park, D. Antypov, C. Martí-Gastaldo, G.J. Miller, J.E. Warren, C.M. Robertson, F. Blanc, G.R. Darling, N.G. Berry, J.A. Purton, D.J. Adams, M.J. Rosseinsky, Angew. Chem. Int. Ed. 53, 193 (2014)

    Article  CAS  Google Scholar 

  16. C. Martí-Gastaldo, D. Antypov, J.E. Warren, M.E. Briggs, P.A. Chater, P.V. Wiper, G.J. Miller, Y.Z. Khimyak, G.R. Darling, N.G. Berry, M.J. Rosseinsky, Nat. Chem. 6, 343 (2014)

    Article  Google Scholar 

  17. C. Martí-Gastaldo, J.E. Warren, K.C. Stylianou, N.L. Flack, M.J. Rosseinsky, Angew. Chem. Int. Ed. 51, 11044 (2012)

    Article  Google Scholar 

  18. C. Martí-Gastaldo, J.E. Warren, M.E. Briggs, J.A. Armstrong, K.M. Thomas, M.J. Rosseinsky, Chem. Eur. J. 21, 16027 (2015)

    Article  Google Scholar 

  19. J. Navarro-Sánchez, A.I. Argente-García, Y. Moliner-Martínez, D. Roca-Sanjuán, D. Antypov, P. Campíns-Falcó, M.J. Rosseinsky, C. Martí-Gastaldo, J. Am. Chem. Soc. 139, 4294 (2017)

    Article  Google Scholar 

  20. T. Sawada, A. Matsumoto, M. Fujita, Angew. Chem. Int. Ed. 53, 7228 (2014)

    Article  CAS  Google Scholar 

  21. T. Sawada, M. Yamagami, S. Akinaga, T. Miyaji, M. Fujita, Chem. Asian J. 12, 1715 (2017)

    Article  CAS  Google Scholar 

  22. R. Miyake, S. Tashiro, M. Shiro, K. Tanaka, M. Shionoya, J. Am. Chem. Soc. 130, 5646 (2008)

    Article  CAS  Google Scholar 

  23. R. Miyake, M. Shionoya, Chem. Commun. 48, 7553 (2012)

    Article  CAS  Google Scholar 

  24. R. Miyake, M. Shionoya, Inorg. Chem. 53, 5717 (2014)

    Article  CAS  Google Scholar 

  25. R. Miyake, C. Kuwata, Y. Masumoto, Dalton Trans. 44, 2993 (2015)

    Article  CAS  Google Scholar 

  26. R. Miyake, C. Kuwata, M. Ueno, T. Yamada, Chem. Eur. J. 24, 793 (2018)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryosuke Miyake .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miyake, R. (2018). Mimicking Integrated Functions of “Molecular Space” in Biological Systems by Using Crystalline Cavities Consisting of Short Peptides. In: Shirakawa, S. (eds) Designed Molecular Space in Material Science and Catalysis. Springer, Singapore. https://doi.org/10.1007/978-981-13-1256-4_11

Download citation

Publish with us

Policies and ethics