Skip to main content

ADP-Based Supplementary Design for Load Frequency Control of Power Systems

  • Chapter
  • First Online:
Adaptive Critic Control with Robust Stabilization for Uncertain Nonlinear Systems

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 167))

Abstract

Randomness from the power load demand and renewable generations causes frequency oscillations among interconnected power systems. Due to the requirement of synchronism of the whole grid, LFC has become one of the essential challenges for power system stability and security. In this chapter, by modeling the disturbances and parameter uncertainties into the LFC model, we propose an adaptive supplementary control scheme for power system frequency regulation. An improved sliding mode control is employed as the basic controller, where a new sliding mode variable is specifically proposed for the LFC problem. The ADP strategy is used to provide the supplementary control signal, which is beneficial to the frequency regulation by adapting to real-time disturbances and uncertainties. The stability analysis is also provided to guarantee the reliability of the proposed control strategy. For comparison, a particle swarm optimization based sliding mode control scheme is developed as the optimal parameter controller for the frequency regulation problem. Simulation studies are performed on single-area and multi-area benchmark systems, and comparative results illustrate the favourable performance of the proposed adaptive approach for frequency regulation under load disturbances and parameter uncertainties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Tamimi, A., Lewis, F.L., Abu-Khalaf, M.: Discrete-time nonlinear HJB solution using approximate dynamic programming: convergence proof. IEEE Trans. Syst. Man Cybern.-Part B: Cybern. 38(4), 943–949 (2008)

    Article  Google Scholar 

  2. Bevrani, H., Daneshmand, P.R., Babahajyani, P., Mitani, Y., Hiyama, T.: Intelligent LFC concerning high penetration of wind power: synthesis and real-time application. IEEE Trans. Sustain. Energy 5(2), 655–662 (2014)

    Article  Google Scholar 

  3. Jiang, L., Yao, W., Wu, Q.H., Wen, J.Y., Cheng, S.J.: Delay-dependent stability for load frequency control with constant and time-varying delays. IEEE Trans. Power Syst. 27(2), 932–941 (2012)

    Article  Google Scholar 

  4. Li, H., Dou, L., Su, Z.: Adaptive nonsingular fast terminal sliding mode control for electromechanical actuator. Int. J. Syst. Sci. 44(3), 401–415 (2013)

    Article  MathSciNet  Google Scholar 

  5. Liu, Y., Wu, Q.H., Zhou, X.X., Jiang, L.: Perturbation observer based multiloop control for the DFIG-WT in multimachine power system. IEEE Trans. Power Syst. 29(6), 2905–2915 (2014)

    Article  Google Scholar 

  6. Lu, Q., Sun, Y.Z., Mei, S.W.: Nonlinear Control Systems and Power System Dynamics. Springer Science & Business Media, Boston (2013)

    MATH  Google Scholar 

  7. Mi, Y., Fu, Y., Wang, C.S., Wang, P.: Decentralized sliding mode load frequency control for multi-area power systems. IEEE Trans. Power Syst. 28(4), 4301–4309 (2013)

    Article  Google Scholar 

  8. Mishra, S., Ramasubramanian, D., Sekhar, P.C.: A seamless control methodology for a grid connected and isolated PV-diesel microgrid. IEEE Trans. Power Syst. 28(4), 4393–4404 (2013)

    Article  Google Scholar 

  9. Molina, D., Venayagamoorthy, G.K., Liang, J.Q., Harley, R.G.: Intelligent local area signals based damping of power system oscillations using virtual generators and approximate dynamic programming. IEEE Trans. Smart Grid 4(1), 498–508 (2013)

    Article  Google Scholar 

  10. Mu, C., Sun, C., Xu, W.: Fast sliding mode control on air-breathing hypersonic vehicles with transient response analysis. Proc. Inst. Mech. Eng. Part I: J. Syst. Control Eng. 230(1), 23–34 (2016)

    Google Scholar 

  11. Mu, C., Xu, W., Sun, C.: On switching manifold design for terminal sliding mode control. J. Frankl. Inst. 353(7), 1553–1572 (2016)

    Article  MathSciNet  Google Scholar 

  12. Mu, C., Ni, Z., Sun, C., He, H.: Air-breathing hypersonic vehicle tracking control based on adaptive dynamic programming. IEEE Trans. Neural Netw. Learn. Syst. 28(3), 584–598 (2017)

    Article  MathSciNet  Google Scholar 

  13. Mu, C., Ni, Z., Sun, C., He, H.: Data-driven tracking control with adaptive dynamic programming for a class of continuous-time nonlinear systems. IEEE Trans. Cybern. 47(6), 1460–1470 (2017)

    Article  Google Scholar 

  14. Mu, C., Tang, Y., He, H.: Improved sliding mode design for load frequency control of power system integrated an adaptive learning strategy. IEEE Trans. Industr. Electron. 64(8), 6742–6751 (2017)

    Article  Google Scholar 

  15. Mu, C., Wang, D., He, H.: Novel iterative neural dynamic programming for data-based approximate optimal control design. Automatica 81, 240–252 (2017)

    Article  MathSciNet  Google Scholar 

  16. Ni, Z., He, H., Wen, J.: Adaptive learning in tracking control based on the dual critic network design. IEEE Trans. Neural Netw. Learn. Syst. 24(6), 913–928 (2013)

    Article  Google Scholar 

  17. Pandey, S.K., Mohanty, S.R., Kishor, N.: A literature survey on load-frequency control for conventional and distribution generation power systems. Renew. Sustain. Energy Rev. 25, 318–334 (2013)

    Article  Google Scholar 

  18. Parmar, K.S., Majhi, S., Kothari, D.P.: Load frequency control of a realistic power system with multi-source power generation. Int. J. Electr. Power Energy Syst. 42(1), 426–433 (2012)

    Article  Google Scholar 

  19. Qian, D., Tong, S., Liu, H., Liu, X.: Load frequency control by neural-network-based integral sliding mode for nonlinear power systems with wind turbines. Neurocomputing 173, 875–885 (2016)

    Article  Google Scholar 

  20. Saxena, S., Hote, Y.V.: Load frequency control in power systems via internal model control scheme and model-order reduction. IEEE Trans. Power Syst. 28(3), 2749–2757 (2013)

    Article  Google Scholar 

  21. Si, J., Wang, Y.-T.: Online learning control by association and reinforcement. IEEE Trans. Neural Netw. 12(2), 264–276 (2001)

    Article  Google Scholar 

  22. Sui, X., Tang, Y., He, H., Wen, J.: Energy-storage-based low-frequency oscillation damping control using particle swarm optimization and heuristic dynamic programming. IEEE Trans. Power Syst. 29(5), 2539–2548 (2014)

    Article  Google Scholar 

  23. Tan, W.: Unified tuning of PID load frequency controller for power systems via IMC. IEEE Trans. Power Syst. 25(1), 341–350 (2010)

    Article  Google Scholar 

  24. Tang, G., Xu, Z., Dong, H., Xu, Q.: Sliding mode robust control based active-power modulation of multi-terminal HVDC transmissions. IEEE Trans. Power Syst. 31(2), 1614–1623 (2016)

    Article  Google Scholar 

  25. Tang, Y., Ju, P., He, H., Qin, C., Wu, F.: Optimized control of DFIG-based wind generation using sensitivity analysis and particle swarm optimization. IEEE Trans. Smart Grid 4(1), 509–520 (2013)

    Article  Google Scholar 

  26. Tang, Y., He, H., Wen, J., Liu, J.: Power system stability control for a wind farm based on adaptive dynamic programming. IEEE Trans. Smart Grid 6(1), 166–177 (2015)

    Article  Google Scholar 

  27. Tang, Y., Yang, J., Yan, J., He, H.: Intelligent load frequency controller using GrADP for island smart grid with electric vehicles and renewable resources. Neurocomputing 170, 406–416 (2015)

    Article  Google Scholar 

  28. Tang, Y., He, H., Ni, Z., Zhao, D., Xu, X.: Fuzzy-based goal representation adaptive dynamic programming. IEEE Trans. Fuzzy Syst. 24(5), 1159–1175 (2016)

    Article  Google Scholar 

  29. Tang, Y., Mu, C., He, H.: SMES based damping controller design using fuzzy-GrHDP considering transmission delay. IEEE Trans. Appl. Supercond. 26(7), 1–5 (2016)

    Google Scholar 

  30. Valle, Y.D., Venayagamoorthy, G.K., Mohagheghi, S., Hernandez, J.C., Harley, R.G.: Particle swarm optimization: basic concepts, variants and applications in power systems. IEEE Trans. Evol. Comput. 12(2), 171–195 (2008)

    Article  Google Scholar 

  31. Vrdoljak, K., Peric, N., Petrovic, I.: Applying optimal sliding mode based load-frequency control in power systems with controllable hydro power plants. Automatika-J. Control Meas. Electron. Comput. Commun. 51(1), 3–18 (2010)

    Google Scholar 

  32. Vrdoljak, K., Peric, N., Petrovic, I.: Sliding mode based load-frequency control in power systems. Electr. Power Syst. Res. 80(5), 514–527 (2010)

    Article  Google Scholar 

  33. Wang, D., Liu, D., Li, H.: Policy iteration algorithm for online design of robust control for a class of continuous-time nonlinear systems. IEEE Trans. Autom. Sci. Eng. 11(2), 627–632 (2014)

    Article  Google Scholar 

  34. Wang, D., Liu, D., Zhang, Q., Zhao, D.: Data-based adaptive critic designs for nonlinear robust optimal control with uncertain dynamics. IEEE Trans. Syst. Man Cybern. Syst. 46(11), 1544–1555 (2016)

    Article  Google Scholar 

  35. Wang, D., He, H., Liu, D.: Improving the critic learning for event-based nonlinear H\(_{\infty }\) control design. IEEE Trans. Cybern. 47(10), 3417–3428 (2017)

    Article  Google Scholar 

  36. Wang, D., He, H., Mu, C., Liu, D.: Intelligent critic control with disturbance attenuation for affine dynamics including an application to a micro-grid system. IEEE Trans. Industr. Electron. 64(6), 4935–4944 (2017)

    Article  Google Scholar 

  37. Wang, D., Mu, C., Liu, D.: Data-driven nonlinear near-optimal regulation based on iterative neural dynamic programming. Acta Autom. Sin. 43(3), 366–375 (2017)

    MATH  Google Scholar 

  38. Wei, Q., Liu, D., Shi, G., Liu, Y.: Multibattery optimal coordination control for home energy management systems via distributed iterative adaptive dynamic programming. IEEE Trans. Industr. Electron. 62(7), 4203–4214 (2015)

    Article  Google Scholar 

  39. Yang, L., Si, J., Tsakalis, K.S., Rodriguez, A.: Direct heuristic dynamic programming for nonlinear tracking control with filtered tracking error. IEEE Trans. Syst. Man Cybern. B Cybern. 39(6), 1617–1622 (2009)

    Article  Google Scholar 

  40. Yousef, H., AL-Kharusi, K., Albadi, M.H., Hosseinzadeh, N.: Load frequency control of a multi-area power system: an adaptive fuzzy logic approach. IEEE Trans. Power Syst. 29(4), 1822–1830 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ding Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, D., Mu, C. (2019). ADP-Based Supplementary Design for Load Frequency Control of Power Systems. In: Adaptive Critic Control with Robust Stabilization for Uncertain Nonlinear Systems. Studies in Systems, Decision and Control, vol 167. Springer, Singapore. https://doi.org/10.1007/978-981-13-1253-3_10

Download citation

Publish with us

Policies and ethics