Skip to main content

Non-Hermitian Effects Due to Asymmetric Backscattering of Light in Whispering-Gallery Microcavities

  • Chapter
  • First Online:
Parity-time Symmetry and Its Applications

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 280))

Abstract

A whispering-gallery microcavity is an open optical system which supports well confined counterpropagating electromagnetic waves. Deforming the boundary of the cavity or perturbing it by other means, e.g. by placing small scatterers near the boundary, leads to coherent backscattering of these waves inside the cavity. In general, this backscattering is asymmetric, i.e. the strength of scattering from the clockwise to the counterclockwise propagation direction is different from the other way around. This asymmetry is intrinsically tied to the non-Hermiticity of the system including the nonorthogonality of mode pairs and the coalescence of modes at exceptional points. We review and present new results on asymmetric backscattering with emphasis on its non-Hermitian effects. Several types of perturbed whispering-gallery cavities are considered. Different applications, such as single-particle detection with enhanced sensitivity, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bender, C.M., Boettcher, S.: Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Berry, M.V.: Physics of nonHermitian degeneracies. Czech. J. Phys. 54, 1039–1047 (2004)

    Article  ADS  Google Scholar 

  3. Berry, M.V., Wilkinson, M.: Diabolic points in the spectra of triangles. Proc. R. Soc. Lond. A 392, 15–43 (1984)

    Article  ADS  MATH  Google Scholar 

  4. Brandstetter, M., Liertzer, M., Deutsch, C., Klang, P., Schöberl, J., Türeci, H.E., Strasser, G., Unterrainer, K., Rotter, S.: Reversing the pump dependence of a laser at an exceptional points. Nat. Commun. 5, 4034 (2014)

    Article  ADS  Google Scholar 

  5. Cao, H., Wiersig, J.: Dielectric microcavities: model systems for wave chaos and non-Hermitian physics. Rev. Mod. Phys. 87, 61–111 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  6. Cartarius, H., Main, J., Wunner, G.: Exceptional points in atomic spectra. Phys. Rev. Lett. 99, 173003 (2007)

    Article  ADS  Google Scholar 

  7. Chen, W., Özdemir, Ş.K., Zhao, G., Wiersig, J., Yang, L.: Exceptional points enhance sensing in an optical microcavity. Nature 548, 192–196 (2017)

    Article  ADS  Google Scholar 

  8. Chern, G.D., Tureci, H.E., Stone, A.D., Chang, R.K., Kneissl, M., Johnson, N.M.: Unidirectional lasing InGaN multiple-quantum-well spiral-shaped micropillars. Appl. Phys. Lett. 83, 1710–1712 (2003)

    Article  ADS  Google Scholar 

  9. Choi, Y., Kang, S., Lim, S., Kim, W., Kim, J.R., Lee, J.H., An, K.: Quasieigenstate coalescence in an atom-cavity quantum composite. Phys. Rev. Lett. 104, 153601 (2010)

    Article  ADS  Google Scholar 

  10. Chow, W.W., Gea-Banacloche, J., Pedrotti, L.M., Sanders, V.E., Schleich, W., Scully, M.O.: The ring laser gyro. Rev. Mod. Phys. 57, 61–104 (1985)

    Article  ADS  Google Scholar 

  11. Collot, L., Lefevre-Seguin, V., Brune, M., Raimond, J., Haroche, S.: Very high-Q whispering-gallery modes observed on fused silica microspheres. Europhys. Lett. 23, 327–334 (1993)

    Article  ADS  Google Scholar 

  12. Dembowski, C., Gräf, H.D., Harney, H.L., Heine, A., Heiss, W.D., Rehfeld, H., Richter, A.: Experimental observation of the topological structure of exceptional points. Phys. Rev. Lett. 86, 787–790 (2001)

    Article  ADS  Google Scholar 

  13. Dembowski, C., Dietz, B., Gräf, H.D., Harney, H.L., Heine, A., Heiss, W.D., Richter, A.: Observation of a chiral state in a microwave cavity. Phys. Rev. Lett. 90, 034101 (2003)

    Article  ADS  Google Scholar 

  14. Dembowski, C., Dietz, B., Gräf, H.D., Harney, H.L., Heine, A., Heiss, W.D., Richter, A.: Encircling an exceptional point. Phys. Rev. E 69, 056216 (2004)

    Article  ADS  Google Scholar 

  15. Dettmann, C.P., Morozov, G.V., Sieber, M., Waalkens, H.: Unidirectional emission from circular dielectric microresonators with a point scatterer. Phys. Rev. A 80, 063813 (2009)

    Article  ADS  Google Scholar 

  16. Dietz, B., Friedrich, T., Metz, J., Miski-Oglu, M., Richter, A., Schäfer, F., Stafford, C.A.: Rabi oscillations at exceptional points in microwave billiards. Phys. Rev. E 75, 027201 (2007)

    Article  ADS  Google Scholar 

  17. Dillon, G., Passatore, G.: The symmetry of the theoretical optical potential and its connection with time reversal and reciprocity. Nucl. Phys. A 114, 623–628 (1968)

    Article  ADS  Google Scholar 

  18. Dubertrand, R., Bogomolny, E., Djellali, N., Lebental, M., Schmit, C.: Circular dielectric cavity and its deformations. Phys. Rev. A 77, 013804 (2008)

    Article  ADS  Google Scholar 

  19. Fang, Y., Li, S., Mei, Y.: Modulation of high quality factors in rolled-up microcavities. Phys. Rev. A 94, 033804 (2016)

    Article  ADS  Google Scholar 

  20. Feng, L., Xu, Y.L., Fegadolli, W.S., Lu, M.H., Oliveira, J.E.B., Almeida, V.R., Chen, Y.F., Scherer, A.: Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. Nat. Mater. 12, 108–113 (2013)

    Article  ADS  Google Scholar 

  21. Feng, L., Zhu, X., Yang, S., Zhu, H., Zhang, P., Yin, X., Wang, Y., Zhang, X.: Demonstration of a large-scale optical exceptional point structure. Opt. Exp. 22, 1760–1767 (2014)

    Article  ADS  Google Scholar 

  22. Fujita, M., Baba, T.: Microgear lasers. Appl. Phys. Lett. 80, 2051–2053 (2002)

    Article  ADS  Google Scholar 

  23. Gao, T., Estrecho, E., Bliokh, K.Y., Liev, T.C.H., Fraser, M.D., Brodbeck, S., Kamp, M., Schneider, C., Höfling, S., Yamamoto, Y., Nori, F., Kivshar, Y.S., Truscott, A.G., Dall, R.G., Ostrovskaya, E.A.: Observation of non-Hermitian degeneracies in a chaotic exciton-polariton billiard. Nature 526, 554–558 (2015)

    Article  ADS  Google Scholar 

  24. Ge, L., Song, Q.H., Redding, B., Cao, H.: Extreme output sensitivity to subwavelength boundary deformation in microcavities. Phys. Rev. A 87, 023833 (2013)

    Article  ADS  Google Scholar 

  25. Gelens, L., Beri, S., Van der Sande, G., Verschaffelt, G., Danckaert, J.: Multistable and excitable behavior in semiconductor ring lasers with broken Z2-symmetry. Eur. Phys. J. D 58, 197–207 (2010)

    Article  ADS  Google Scholar 

  26. Gil-Santos, E., Ramos, D., Martínez, J., Fernández-Regúlez, M., García, R., San Paulo, A., Calleja, M., Tamayo, J.: Nanomechanical mass sensing and stiffness spectrometry based on two-dimensional vibrations of resonant nanowires. Nat. Nanotech. 5, 641–645 (2010)

    Article  ADS  Google Scholar 

  27. He, L., Özdemir, Ş.K., Zhu, J., Kim, W., Yang, L.: Detecting single viruses and nanoparticles using whispering gallery microlasers. Nat. Nanotech. 6, 428–432 (2011)

    Article  ADS  Google Scholar 

  28. He, L., Özdemir, Ş.K., Zhu, J., Yang, L.: Ultrasensitive detection of mode splitting in active optical microcavities. Phys. Rev. A 82, 053810 (2010)

    Article  ADS  Google Scholar 

  29. Heiss, W.D.: Repulsion of resonance states and exceptional points. Phys. Rev. E 61, 929–932 (2000)

    Article  ADS  Google Scholar 

  30. Heiss, W.D.: Exceptional points of non-Hermitian operators. J. Phys. A Math. Gen. 37, 2455–2464 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Heiss, W.D., Harney, H.L.: The chirality of exceptional points. Eur. Phys. J. D 17, 149–151 (2001)

    Article  ADS  Google Scholar 

  32. Hodaei, H., Hassan, A., Wittek, S., Carcia-Cracia, H., El-Ganainy, R., Christodoulides, D., Khajavikhan, M.: Enhanced sensitivity at higher-order exceptional points. Nature 548, 187–191 (2017)

    Article  ADS  Google Scholar 

  33. Hohimer, J.P., Vawter, G.A., Craft, D.C.: Unidirectional operation in a semiconductor ring diode laser. Appl. Phys. Lett. 62, 1185–1187 (1993)

    Article  ADS  Google Scholar 

  34. Ilchenko, V.S., Gorodetsky, M.L., Yao, X.S., Maleki, L.: Microtorus: a high-finesse microcavity with whispering-gallery modes. Opt. Lett. 26, 256–258 (2001)

    Article  ADS  Google Scholar 

  35. Jackson, J.D.: Classical Electrodynamics. Wiley, New York (1962)

    MATH  Google Scholar 

  36. Jiang, X.F., Xiao, Y.F., Zou, C.L., He, L., Dong, C.H., Li, B.B., Li, Y., Sun, F.W., Yang, L., Gong, Q.: Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities. Adv. Mater. 24, 260–264 (2012)

    Google Scholar 

  37. Jiang, X., Shao, L., Zhang, S.X., Yi, X., Wiersig, J., Wang, L., Gong, Q., Loncar, M., Yang, L., Xiao, Y.F.: Chaos-assisted broadband momentum transformation in optical microresonators. Science 358, 344 (2017)

    Article  ADS  Google Scholar 

  38. Kalagara, H., Chu, F.H., Smolyakov, G.A., Osiński, M.: Reciprocity principle and nonequivalence of counterpropagating modes in whistle-geometry ring lasers. In: Witzigmann, B., Osiński, M., Arakawa, Y. (eds.) Physics and Simulation of Optoelectronic Devices XXIV. Proceedings of SPIE, vol. 9742, p. 974213. SPIE, Bellingham (2016)

    Google Scholar 

  39. Kato, T.: Perturbation Theory for Linear Operators. Springer, New York (1966)

    Book  MATH  Google Scholar 

  40. Kim, W.J., Kuang, W., O’Brien, J.D.: Dispersion characteristics of photonic crystal coupled resonator optical waveguides. Opt. Exp. 11, 3431–3437 (2003)

    Article  ADS  Google Scholar 

  41. Kim, M., Kwon, K., Shim, J., Jung, Y., Yu, K.: Partially directional microdisk laser with two Rayleigh scatterers. Opt. Lett. 39, 2423–2426 (2014)

    Article  ADS  Google Scholar 

  42. Kippenberg, T.J.: Nonlinear optics in ultra-high-Q whispering-gallery optical microcavities. PhD thesis, California Institute of Technology (2004)

    Google Scholar 

  43. Kippenberg, T.J., Spillane, S.M., Vahala, K.J.: Modal coupling in traveling-wave resonators. Opt. Lett. 27, 1669 (2002)

    Article  ADS  Google Scholar 

  44. Kippenberg, T.J., Kalkman, J., Polman, A., Vahala, K.J.: Demonstration of an erbium-doped microdisk laser on a silicon chip. Phys. Rev. A 74, 051802(R) (2006)

    Google Scholar 

  45. Kneissl, M., Teepe, M., Miyashita, N., Johnson, N.M., Chern, G.D., Chang, R.K.: Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission. Appl. Phys. Lett. 84, 2485–2487 (2004)

    Article  ADS  Google Scholar 

  46. Kramer, J.: Zeitaufgelöste Simulationen der asymmetrischen Rückstreuung in einem dielektrischen Mikrodiskresonator. Diplomarbeit, Otto-von-Guericke-Universität Magdeburg (2014)

    Google Scholar 

  47. Kullig, J., Wiersig, J.: Frobenius-Perron eigenstates in deformed microdisk cavities: non-Hermitian physics and asymmetric backscattering in ray dynamics. New J. Phys. 18, 015005 (2016)

    Article  ADS  Google Scholar 

  48. Kullig, J., Wiersig, J.: Perturbation theory for asymmetric deformed microdisk cavities. Phys. Rev. A 94, 043850 (2016)

    Article  ADS  Google Scholar 

  49. Lee, J.Y., Luo, X., Poon, A.W.: Reciprocal transmissions and asymmetric modal distributions in waveguide-coupled spiral-shaped microdisk resonators. Opt. Exp. 15, 14650 (2007)

    Article  ADS  Google Scholar 

  50. Lee, S.B., Yang, J., Moon, S., Lee, J.H., An, K., Shim, J.B., Lee, H.W., Kim, S.W.: Chaos-assisted nonresonant optical pumping of quadrupole-deformed microlasers. Appl. Phys. Lett. 90, 041106 (2007)

    Article  ADS  Google Scholar 

  51. Lee, S.Y., Ryu, J.W., Shim, J.B., Lee, S.B., Kim, S.W., An, K.: Divergent Petermann factor of interacting resonances in a stadium-shaped microcavity. Phys. Rev. A 78, 015805 (2008)

    Article  ADS  Google Scholar 

  52. Lee, S.B., Yang, J., Moon, S., Lee, S.Y., Shim, J.B., Kim, S.W., Lee, J.H., An, K.: Observation of an exceptional point in a chaotic optical microcavity. Phys. Rev. Lett. 103, 134101 (2009)

    Article  ADS  Google Scholar 

  53. Lee, J.W., Kim, K.Y., Moon, H.J., Hyun, K.S.: Selection of lasing direction in single mode semiconductor square ring cavities. J. Appl. Phys. 119, 053101 (2016)

    Article  ADS  Google Scholar 

  54. Liang, J.J., Lau, S.T., Leary, M.H., Ballantyne, J.M.: Unidirectional operation of waveguide diode ring lasers. Appl. Phys. Lett. 70, 1192–1194 (1997)

    Article  ADS  Google Scholar 

  55. Lin, Z., Ramezani, H., Eichelkraut, T., Kottos, T., Cao, H., Christodoulides, D.N.: Unidirectional invisibility induced by PT-symmetric periodic structures. Phys. Rev. Lett. 106, 213901 (2011)

    Article  ADS  Google Scholar 

  56. Little, B.E., Chu, S.T., Haus, H.A., Foresi, J., Laine, J.P.: Microring resonator channel dropping filters. J. Lightwave Technol. 15, 998–1005 (1997)

    Article  ADS  Google Scholar 

  57. Little, B.E., Chu, S.T., Absil, P.P., Hryniewicz, J.V., Johnson, F.G., Seiferth, F., Gill, D., Van, V., King, O., Trakalo, M.: Very high-order microring resonator filters for WDM applications. IEEE Photon. Technol. Lett. 16, 2263–2265 (2004)

    Article  ADS  Google Scholar 

  58. Liu, Y., Zhang, L., Williams, J.A.R., Bennio, I.: Optical bend sensor based on measurement of resonance mode splitting of long-period fiber grating. IEEE Photon. Tech. Lett. 12, 531–533 (2000)

    Article  ADS  Google Scholar 

  59. Longhi, S., Feng, L.: PT-symmetric microring laser absorber. Opt. Lett. 39, 5026–5029 (2014)

    Article  ADS  Google Scholar 

  60. Longhi, S., Feng, L.: Unidirectional lasing in semiconductor microring lasers at an exceptional point. Photon. Res. 5, B1–B6 (2017)

    Article  Google Scholar 

  61. Malzard, S., Poli, C., Schomerus, H.: Topologically protected defect states in open photonic systems with non-Hermitian charge-conjugation and parity-time symmetry. Phys. Rev. Lett. 115, 200402 (2015)

    Article  ADS  Google Scholar 

  62. McCall, S.L., Levi, A.F.J., Slusher, R.E., Pearton, S.J., Logan, R.A.: Whispering-gallery mode microdisk lasers. Appl. Phys. Lett. 60, 289–291 (1992)

    Article  ADS  Google Scholar 

  63. Miao, P., Zhang, Z., Sun, J., Walasik, W., Longhi, S., Litchinitser, N.M., Feng, L.: Orbital angular momentum microlaser. Science 353, 464–467 (2016)

    Article  ADS  Google Scholar 

  64. Michael, C.P., Srinivasan, K., Johnson, T.J., Painter, O., Lee, K.H., Hennessy, K., Kim, H., Hu, E.: Wavelength- and material-dependent absorption in GaAs and AlGaAs microcavities. Appl. Phys. Lett. 90, 051108 (2007)

    Article  ADS  Google Scholar 

  65. Nöckel, J.U., Stone, A.D.: Chaos in optical cavities. Nature (London) 385, 45–47 (1997)

    Article  ADS  Google Scholar 

  66. Peng, B., Özdemir, Ş.K., Liertzer, M., Chen, W., Kramer, J., Yilmaz, H., Wiersig, J., Rotter, S., Yang, L.: Chiral modes and directional lasing at exceptional points. Proc. Natl. Acad. Sci. USA 113, 6845 (2016)

    Article  ADS  Google Scholar 

  67. Poon, J.K., Scheuer, J., Xu, Y., Yariv, A.: Designing coupled-resonator optical waveguide delay lines. J. Opt. Soc. Am. B 21(9), 1665–1673 (2004)

    Article  ADS  Google Scholar 

  68. Regensburger, A., Bersch, C., Miri, M.A., Onishchukov, G., Christodoulides, D.N., Peschel, U.: Parity-time synthetic photonic lattices. Nature 167, 488 (2012)

    Google Scholar 

  69. Richter, S., Michalsly, T., Sturm, C., Rosenow, B., Grundmann, M., Schmidt-Grund, R.: Exceptional points in anisotropic planar microcavities. Phys. Rev. A 95, 023836 (2017)

    Article  ADS  Google Scholar 

  70. Rondin, L., Tetienne, J.P., Hingant, T., Roch, J.F., Maletinsky, P., Jacques, V.: Magnetometry with nitrogen-vacancy defects in diamond. Rep. Prog. Phys. 77, 056503 (2014)

    Article  ADS  Google Scholar 

  71. Rüter, C.E., Makris, K.G., El-Ganainy, R., Christodoulides, D.N., Segev, M., Kip, D.: Observation of parity-time symmetry in optics. Nat. Phys. 6, 192–195 (2010)

    Article  Google Scholar 

  72. Ryu, J., Lee, J.W., Yi, C.H., Kim, J.H., Lee, I.G., Kim, H.S., Oh K.R., Kim, C.M.: Chirality of a resonance in the absence of backscatterings. Opt. Exp. 25, 3381 (2017)

    Article  ADS  Google Scholar 

  73. Sarma, R., Ge, L., Wiersig, J., Cao, H.: Rotating optical microcavities with broken chiral symmetry. Phys. Rev. Lett. 114, 053903 (2015)

    Article  ADS  Google Scholar 

  74. Schermer, M., Bittner, S., Singh, G., Ulysee, C., Lebental, M., Wiersig, J.: Unidirectional light emission from low-index polymer microlasers. Appl. Phys. Lett. 106, 101107 (2015)

    Article  ADS  Google Scholar 

  75. Schlederer, B.: Description of a bottle resonantor evanescently coupled to a waveguide. Diploma thesis, Vienna University of Technology, supervised by S. Rotter (2013)

    Google Scholar 

  76. Schlehahn, A., Albert, F., Schneider, C., Höfling, S., Reitzenstein, S., Wiersig, J., Kamp, M.: Mode selection in electrically driven quantum dot microring cavities. Opt. Exp. 21, 15951–15958 (2013)

    Article  ADS  Google Scholar 

  77. Schomerus, H.: Excess quantum noise due to mode orthogonality in dielectric microresonators. Phys. Rev. A 79, 061801(R) (2009)

    Google Scholar 

  78. Schomerus, H., Wiersig, J.: Non-Hermitian-transport effects in coupled-resonator optical waveguides. Phys. Rev. A 90, 053819 (2014)

    Article  ADS  Google Scholar 

  79. Shin, Y., Kwak, H., Moon, S., Lee, S.B., Yang, J., An, K.: Observation of an exceptional point in a two-dimensional ultrasonic cavity of concentric circular shells. Sci. Rep. 6, 38826 (2016)

    Article  ADS  Google Scholar 

  80. Shu, F.J., Zou, C.L., Zou, X.B., Yang, L.: Chiral symmetry breaking in a microring optical cavity by engineered dissipation. Phys. Rev. A 91, 013848 (2016)

    Article  ADS  Google Scholar 

  81. Siegman, A.E.: Excess spontaneous emission in non-Hermitian optical systems. I. Laser amplifiers. Phys. Rev. A 39, 1253–1263 (1989)

    ADS  Google Scholar 

  82. Siegman, A.E.: Excess spontaneous emission in non-Hermitian optical systems. II. Laser oscillators. Phys. Rev. A 39, 1264–1268 (1989)

    Google Scholar 

  83. Song, Q.H., Zhang, N., Zhai, H., Liu, S., Gu, Z., Wang, K., Sun, S., Chen, Z., Meng, L., Xiao, S.: The combination of high Q factor and chirality in twin cavities and microcavity chain. Sci. Rep. 4, 6493 (2014)

    Article  ADS  Google Scholar 

  84. Song, Q.H., Gu, Z., Zhang, N., Wang, K., Yi, N., Xiao, S.: Improvement of the chirality near avoided resonance crossing in optical microcavity. Sci. China-Phys. Mech. Astrom. 58, 114210 (2015)

    Article  Google Scholar 

  85. Stefanou, N., Modinos, A.: Impurity bands in photonic insulators. Phys. Rev. B 57, 12127 (1998)

    Article  ADS  Google Scholar 

  86. Stöckmann, H.J., Persson, E., Kim, Y.H., Barth, M., Kuhl, U., Rotter, I.: Effective Hamiltonian for a microwave billiard with attached waveguide. Phys. Rev. E 65, 066211 (2002)

    Article  ADS  Google Scholar 

  87. Sui, S.S., Tang, M.Y., Yang, Y.D., Xiao, J.L., Du, Y., Huang, Y.Z.: Hybrid spiral-ring microlaser vertically coupled to silicon waveguide for stable and unidirectional output. Opt. Lett. 40, 4995–4998 (2015)

    Article  ADS  Google Scholar 

  88. Sui, S.S., Huang, Y.Z., Tang, M.Y., Weng, H.Z., Yang, Y.D., Xiao, J.L., Du, Y.: Locally deformed-ring hybrid microlasers exhibiting stable unidirectional emission from a Si waveguide. Opt. Lett. 41, 3928–3931 (2016)

    Article  ADS  Google Scholar 

  89. Sunada, S., Harayama, T.: Sagnac effect in resonant microcavities. Phys. Rev. A 74, 021801(R) (2006)

    Google Scholar 

  90. Sunada, S., Harayama, T.: Design of resonant microcavities: application to optical gyroscopes. Opt. Exp. 15, 16245–16254 (2007)

    Article  ADS  Google Scholar 

  91. Taflove, A., Hagness, S.C.: Computational Electrodynamics the Finite-Difference Time-Domain Method. Artech House, London (2000)

    MATH  Google Scholar 

  92. Tamboli, A.C., Haberer, E.D., Sharma, R., Lee, K.W., Nakamura, S., Hu, E.L.: Room-temperature continuous-wave lasing in GaN/InGaN microdisks. Nat. Photon. 1, 61–64 (2007)

    Article  ADS  Google Scholar 

  93. Vahala, K.J.: Optical microcavities. Nature (London) 424, 839–846 (2003)

    Article  ADS  Google Scholar 

  94. Vollmer, F., Yang, L.: Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices. Nanophotonics 1, 267–291 (2012)

    Article  ADS  Google Scholar 

  95. Vollmer, F., Arnold, S., Keng, D.: Single virus detection from the reactive shift of a whispering-gallery mode. Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008)

    Article  ADS  Google Scholar 

  96. Wang, X.Y., Chen, H.Z., Li, Y., Li, B., Ma, R.M.: Microscale vortex laser with controlled topological charge. Chin. Phys. B 25, 124211 (2016)

    Article  ADS  Google Scholar 

  97. Wang, X.Y., Chen, H.Z., Wang, S., Zhang, S., Ma, R.M.: Vortex radiation from a single emitter (2017). ArXiv:1707.01055

    Google Scholar 

  98. Wiersig, J.: Boundary element method for resonances in dielectric microcavities. J. Opt. A Pure Appl. Opt. 5, 53–60 (2003)

    Article  ADS  Google Scholar 

  99. Wiersig, J.: Reciprocal transmissions and asymmetric modal distributions in waveguide-coupled spiral-shaped microdisk resonators: comment. Opt. Exp. 16, 5874–5875 (2008)

    Article  ADS  Google Scholar 

  100. Wiersig, J.: Structure of whispering-gallery modes in optical microdisks perturbed by nanoparticles. Phys. Rev. A 84, 063828 (2011)

    Article  ADS  Google Scholar 

  101. Wiersig, J.: Chiral and nonorthogonal eigenstate pairs in open quantum systems with weak backscattering between counterpropagating traveling waves. Phys. Rev. A 89, 012119 (2014)

    Article  ADS  Google Scholar 

  102. Wiersig, J.: Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection. Phys. Rev. Lett. 112, 203901 (2014)

    Article  ADS  Google Scholar 

  103. Wiersig, J.: Sensors operating at exceptional points: general theory. Phys. Rev. A 93, 033809 (2016)

    Article  ADS  Google Scholar 

  104. Wiersig, J., Hentschel, M.: Combining directional light output and ultralow loss in deformed microdisks. Phys. Rev. Lett. 100, 033901 (2008)

    Article  ADS  Google Scholar 

  105. Wiersig, J., Kullig, J.: Optical microdisk cavities with rough sidewalls: a perturbative approach based on weak boundary deformations. Phys. Rev. A 95, 053815 (2017)

    Article  ADS  Google Scholar 

  106. Wiersig, J., Kim, S.W., Hentschel, M.: Asymmetric scattering and nonorthogonal mode patterns in optical microspirals. Phys. Rev. A 78, 053809 (2008)

    Article  ADS  Google Scholar 

  107. Wiersig, J., Eberspächer, A., Shim, J.B., Ryu, J.W., Shinohara, S., Hentschel, M., Schomerus, H.: Nonorthogonal pairs of copropagating optical modes in deformed microdisk cavities. Phys. Rev. A 84, 023845 (2011)

    Article  ADS  Google Scholar 

  108. Xiao, Q., Klitis, C., Li, S., Chen, Y., Cai, X., Sorel, M., Yu, S.: Generation of photonic orbital angular momentum superposition states using vortex beam emitters with superimposed gratings. Opt. Exp. 24, 3168–3176 (2016)

    Article  ADS  Google Scholar 

  109. Xu, Y., Lee, R.K., Yariv, A.: Propagation and second-harmonic generation of electromagnetic waves in a coupled-resonator optical waveguide. J. Opt. Soc. Am. B 17, 387–400 (2000)

    Article  ADS  Google Scholar 

  110. Yariv, A., Xu, Y., Lee, R.K., Scherer, A.: Coupled-resonator optical waveguide: a proposal and analysis. Opt. Lett. 24, 711–713 (1999)

    Article  ADS  Google Scholar 

  111. Zhang, N., Liu, S., Wang, K., Gu, Z., Meng, L., Yi, N., Xiao, S., Song, Q.H.: Single nanoparticle detection using far-field emission of photonic molecule around an exceptional point. Sci. Rep. 5, 11912 (2015)

    Article  ADS  Google Scholar 

  112. Zhang, N., Gu, Z., Liu, S., Wang, Y., Wang, S., Duan, Z., Sun, W., Xiao, Y.F., Xiao, S., Song, Q.H.: Far-field single nanoparticle detection and sizing. Optica 4, 1151–1156 (2017)

    Article  Google Scholar 

  113. Zhu, J., Özdemir, Ş.K., He, L., Yang, L.: Controll manipulation of mode splitting in an optical microcavity by two Rayleigh scatterers. Opt. Exp. 18, 23535 (2010)

    Article  ADS  Google Scholar 

  114. Zhu, J., Özdemir, Ş.K., Xiao, Y.F., Li, L., He, L., Chen, D.R., Yang, L.: On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat. Photon. 4, 46 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I would like to thank J. Kullig for carefully reading the manuscript, W. Chen and L. Yang for providing Figs. 1a, 9, 10, 12b and L. Feng for providing Fig. 1c. Financial support by the DFG (project WI1986/6-1) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Wiersig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wiersig, J. (2018). Non-Hermitian Effects Due to Asymmetric Backscattering of Light in Whispering-Gallery Microcavities. In: Christodoulides, D., Yang, J. (eds) Parity-time Symmetry and Its Applications. Springer Tracts in Modern Physics, vol 280. Springer, Singapore. https://doi.org/10.1007/978-981-13-1247-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1247-2_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1246-5

  • Online ISBN: 978-981-13-1247-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics