Skip to main content

Passive \(\mathbb {PT}\)-Symmetry in Laser-Written Optical Waveguide Structures

  • Chapter
  • First Online:
Book cover Parity-time Symmetry and Its Applications

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 280))

  • 2595 Accesses

Abstract

In this chapter we describe how \(\mathbb {PT}\)-symmetric systems can be implemented in a passive fashion, that is, without using gain, by employing modulated waveguide structures. To this end, we present the underlying theoretical ideas as well as the details of the implementation of such passive structures. As an application, we experimentally demonstrate the transition from ballistic to diffusive transport in passive \(\mathbb {PT}\)-symmetric waveguide arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This operation is quite common in quantum field theory (especially in lattice quantum field theory), where it is used to transform the Minkowski metric to an Euclidean one, allowing methods of statistical mechanics to be used for evaluating path integrals on a lattice [20].

  2. 2.

    The results presented in this section, although specific to the case of a step-index potential, are valid for any arbitrary (but well defined) refractive index distribution, as it will be discussed at the end of this paragraph.

  3. 3.

    Notice, that Eq. (10) differs slightly from the one obtained by applying the Kramers-Henneberger transformation, since the extra term appearing in Eq. (10) should be of the form \(\nu ^2 d\cos {}(\nu Z)\psi \) instead of \(i\nu d\sin {}(\nu z)\partial \psi /\partial X\). Here, we choose this second form, since it offers a better way to calculate the losses of the system analytically. However, it is not difficult to prove that both versions of the transformed equation lead to equivalent results.

  4. 4.

    Notice that, in defining the functions \(\mathbb {T}(\beta _b,\nu )\) and \(\mathbb {U}(\beta _b,\nu )\), we have neglected a term proportional to δ(β a − β b + ν), since it accounts for an off-resonance term.

  5. 5.

    \(\bar {\beta }\) can be anyway eliminated by means of a suitable gauge transformation.

  6. 6.

    The amplitude of the modulation has chosen to be small, in order to avoid the onset of a z-modulated coupling constant.

References

  1. Bender, C.M., Boettcher, S.: Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  2. El-Ganainy, R., Makris, K.G., Christodoulides, D.N., Musslimani, Z.H.: Theory of coupled optical PT-symmetric structures. Opt. Lett. 32(17), 2632–2634 (2007)

    Article  ADS  Google Scholar 

  3. Makris, K.G., El-Ganainy, R., Christodoulides, D.N., Musslimani, Z.H.: Beam dynamics in PT symmetric optical lattices. Phys. Rev. Lett. 100, 103904 (2008)

    Article  ADS  Google Scholar 

  4. Zheng, M.C., Christodoulides, D.N., Fleischmann, R., Kottos, T.: PT optical lattices and universality in beam dynamics. Phys. Rev. A 82, 010103 (2010)

    Article  ADS  Google Scholar 

  5. Musslimani, Z.H., Makris, K.G., El-Ganainy, R., Christodoulides, D.N.: Optical solitons in PT periodic potentials. Phys. Rev. Lett. 100, 030402 (2008)

    Article  ADS  Google Scholar 

  6. Dmitriev, S.V., Sukhorukov, A.A., Kivshar, Y.S.: Binary parity-time-symmetric nonlinear lattices with balanced gain and loss. Opt. Lett. 35(17), 2976–2978 (2010)

    Article  ADS  Google Scholar 

  7. Longhi, S.: Bloch oscillations in complex crystals with PT symmetry. Phys. Rev. Lett. 103, 123601 (2009)

    Article  ADS  Google Scholar 

  8. Longhi, S.: Spectral singularities in a non-Hermitian Friedrichs-Fano-Anderson model. Phys. Rev. B 80, 165125 (2009)

    Article  ADS  Google Scholar 

  9. Szameit, A., Rechtsman, M.C., Bahat-Treidel, O., Segev, M.: PT-symmetry in honeycomb photonic lattices. Phys. Rev. A 84, 021806 (2011)

    Article  ADS  Google Scholar 

  10. Guo, A., Salamo, G.J., Duchesne, D., Morandotti, R., Volatier-Ravat, M., Aimez, V., Siviloglou, G.A., Christodoulides, D.N.: Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009)

    Article  ADS  Google Scholar 

  11. Gräfe, M., Heilmann, R., Keil, R., Eichelkraut, T., Heinrich, M., Nolte, S., Szameit, A.: Correlations of indistinguishable particles in non-Hermitian lattices. New J. Phys. 15(3), 033008 (2013)

    Article  ADS  Google Scholar 

  12. Eichelkraut, T., Heilmann, R., Weimann, S., Stützer, S., Dreisow, F., Christodoulides, D.N., Nolte, S., Szameit, A.: Mobility transition from ballistic to diffusive transport in non-Hermitian lattices. Nat. Commun. 4, 2533 (2013)

    Article  ADS  Google Scholar 

  13. Ornigotti, M., Szameit, A.: Quasi PT-symmetry in passive photonic lattices. J. Opt. 16(6), 065501 (2014)

    Article  ADS  Google Scholar 

  14. Rüter, C.E., Makris, K.G., El-Ganainy, R., Christodoulides, D.N., Segev, M., Kip, D.: Observation of parity-time symmetry in optics. Nat. Phys. 6, 192–195 (2010)

    Article  Google Scholar 

  15. Regensburger, A., Bersch, C., Miri, M.-A., Onishchukov, G., Christodoulides, D.N., Peschel, U.: Parity-time synthetic photonic lattices. Nature 488, 167–171 (2012)

    Article  ADS  Google Scholar 

  16. El-Ganainy, R., Makris, K.G., Christodoulides, D.N., Musslimani, H.Z.: Theory of coupled optical pt-symmetric structures. Opt. Lett. 32, 2632 (2007)

    Article  ADS  Google Scholar 

  17. Bendix, O., Fleischmann, R., Kottos, T., Shapiro, B.: Optical structures with local pt-symmetry. J. Phys. A Math. Theor. 43, 263505 (2010)

    Article  MathSciNet  Google Scholar 

  18. Yariv, A.: Optical Electronics, 3rd edn. CBS College Publishing, New York (1985)

    Google Scholar 

  19. Peskin, M.E., Schroeder, D.V.: An Introduction to Quantum Field Theory. Perseus Books, Reading, Massachusetts (1995)

    Google Scholar 

  20. Rohe, H.J.: Lattice Gauge Theories: An Introduction. World Scientific Publishing, Singapore (2012)

    Google Scholar 

  21. Chan, J.W., Huser, T., Risbud, S., Krol, D.M.: Structural changes in fused silica after exposure to focused femtosecond laser pulses. Opt. Lett. 26(21), 1726–1728 (2001)

    Article  ADS  Google Scholar 

  22. Chan, J.W., Huser, T.R., Risbud, S.H., Krol, D.M.: Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses. Appl. Phys. A 76(3), 367–372 (2003)

    Article  ADS  Google Scholar 

  23. Mansour, I., Caccavale, F.: An improved procedure to calculate the refractive index profile from the measured near-field intensity. J. Lightwave Technol. 14(3), 423–428 (1996)

    Article  ADS  Google Scholar 

  24. Szameit, A., Dreisow, F., Heinrich, M., Pertsch, T., Nolte, S., Tünnermann, A., Suran, E., Louradour, F., Barthélémy, A., Longhi, S.: Image reconstruction in segmented femtosecond laser-written waveguide arrays. Appl. Phys. Lett. 93(18), 181109 (2008)

    Article  ADS  Google Scholar 

  25. Szameit, A., Garanovich, I.L., Heinrich, M., Sukhorukov, A.A., Dreisow, F., Pertsch, T., Nolte, S., Tünnermann, A., Longhi, S., Kivshar, Y.S.: Observation of two-dimensional dynamic localization of light. Phys. Rev. Lett. 104, 223903 (2010)

    Article  ADS  Google Scholar 

  26. Heinrich, M., Szameit, A., Dreisow, F., Keil, R., Minardi, S., Pertsch, T., Nolte, S., Tünnermann, A., Lederer, F.: Observation of three-dimensional discrete-continuous X waves in photonic lattices. Phys. Rev. Lett. 103, 113903 (2009)

    Article  ADS  Google Scholar 

  27. Naether, U., Meyer, J.M., Stützer, S., Tünnermann, A., Nolte, S., Molina, M.I., Szameit, A.: Anderson localization in a periodic photonic lattice with a disordered boundary. Opt. Lett. 37(4), 485–487 (2012)

    Article  ADS  Google Scholar 

  28. Kramers, H.A.: Collected Scientific Papers. North-Holland, Amsterdam (1956)

    Google Scholar 

  29. Henneberger, W.C.: Perturbation method for atoms in intense light beams. Phys. Rev. Lett. 21, 838 (1968)

    Article  ADS  Google Scholar 

  30. Breuer, H.P.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2007)

    Book  Google Scholar 

  31. Byron, F.W., Fuller, R.W.: Mathematics of Classica and Quantum Physics. Dover, New York (1992)

    Google Scholar 

  32. Golshani, M., Weimann, S., Jafari, Kh., Khazaei Nezhad, M., Langari, A., Bahrampour, A.R., Eichelkraut, T., Mahdavi, S.M., Szameit, A.: Impact of loss on the wave dynamics in photonic waveguide lattices. Phys. Rev. Lett. 113, 123903 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Szameit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eichelkraut, T., Weimann, S., Kremer, M., Ornigotti, M., Szameit, A. (2018). Passive \(\mathbb {PT}\)-Symmetry in Laser-Written Optical Waveguide Structures. In: Christodoulides, D., Yang, J. (eds) Parity-time Symmetry and Its Applications. Springer Tracts in Modern Physics, vol 280. Springer, Singapore. https://doi.org/10.1007/978-981-13-1247-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1247-2_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1246-5

  • Online ISBN: 978-981-13-1247-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics