Skip to main content

Scattering Theory and \(\mathbb {P}\mathbb {T}\)-Symmetry

  • Chapter
  • First Online:
Parity-time Symmetry and Its Applications

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 280))

Abstract

We outline a global approach to scattering theory in one dimension that allows for the description of a large class of scattering systems and their \(\mathbb {P}\)-, \(\mathbb {T}\)-, and \(\mathbb {P}\mathbb {T}\)-symmetries. In particular, we review various relevant concepts such as Jost solutions, transfer and scattering matrices, reciprocity principle, unidirectional reflection and invisibility, and spectral singularities. We discuss in some detail the mathematical conditions that imply or forbid reciprocal transmission, reciprocal reflection, and the presence of spectral singularities and their time-reversal. We also derive generalized unitarity relations for time-reversal-invariant and \(\mathbb {P}\mathbb {T}\)-symmetric scattering systems, and explore the consequences of breaking them. The results reported here apply to the scattering systems defined by a real or complex local potential as well as those determined by energy-dependent potentials, nonlocal potentials, and general point interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    These are occasionally labelled by T lr(k) and R lr(k), [44, 59]. Here we refrain from using this notation, because some references use these symbols for the reflection and transmission amplitudes and not their modulus squared [25].

  2. 2.

    By a scatterer we mean the interaction causing the propagation of a wave differ from that of a plane wave.

  3. 3.

    In Sect. 4, we prove that this conditions holds for the scattering systems described by the Schrödinger equation (2).

  4. 4.

    A genuine multidimensional generalization of the transfer matrix has been recently proposed in [31].

  5. 5.

    This can be easily checked by differentiating W(x) and using (2) to show that W (x) = 0.

  6. 6.

    Equation (58) implies that \(k_m=\sqrt {(\pi m/L)^2+\mathfrak {z}}\). This in turn means that for \(\mathfrak {z}>0\), m can be any positive integer, and for \(\mathfrak {z}<0\), \(m>L\sqrt {-\mathfrak {z}}/\pi \).

  7. 7.

    Reflectionless potentials also arise as soliton solutions of nonlinear differential equations [24].

  8. 8.

    This means that v(x) is unidirectionally left-invisible for k = K n∕2 = πnL provided that we can neglect terms of order \((\mathfrak {z}_n/k^2)^2\) in the calculation of the reflection and transmission amplitudes.

  9. 9.

    For a review of basic properties of these potentials, see [15].

  10. 10.

    This explains why Theorems 6 and 8 do not conflict.

  11. 11.

    The notion of a spectral singularity was originally introduced in [60] for Schrödinger operators in the half-line. It was subsequently generalized to the case of full-line in [21]. The term “spectral singularity” was originally used to refer to this notion in [69]. For a readable account of basic mathematical facts about spectral singularities and further references, see [14].

  12. 12.

    Spectral singularities must be distinguished with the solutions of the time-independent Schrödinger equation that correspond to a bound state in the continuum [17, 72] for the following reasons: (1) They define scattering states that do not decay at spatial infinities. (2) They may exist for exponentially decaying and short-range potentials. (3) As we explain in Sect. 8, real potentials cannot have spectral singularities. None of these holds for bound states in the continuum.

  13. 13.

    The importance of purely outgoing waves in the laser theory predates the discovery of their connection to the mathematics of spectral singularities. See for example [73].

  14. 14.

    For a proof of this statement see [39, Appendix]. A more detailed discussion is provided in [68].

  15. 15.

    This is obviously not always possible. A sufficient condition for the existence of such a modified inner product is that the operator L satisfies the pseudo-Hermiticity relation L  = η −1 for a positive-definite bounded linear operator η with a bounded inverse. For further discussion of these and related issues see [39, 45] and references therein.

  16. 16.

    A simple examples is \(\mathbb {T}_\tau :=e^{i\tau }\mathbb {T}\) where \(\tau \in \mathbb {R}\).

  17. 17.

    The scattering problem for this Hamiltonian operator is equivalent to that of the energy-dependent scattering potential \(v(x,k):=2m v(x)+ k^2/(1+e^{\mu x^2})\). This is because we can write (x) = (x) in the form − ψ ′′(x) + v(x, k)ψ(x) = k 2 ψ(x) where \(k:=\sqrt {E}\).

  18. 18.

    An extension of this theorem to more general scattering systems is given in [52].

  19. 19.

    Equations (164) was originally conjectures in [1] for \(\mathbb {P}\mathbb {T}\)-symmetric scattering potentials based on evidence provided by the study of a complexified Scarf II potential. It was subsequently proven in [48] for general \(\mathbb {P}\mathbb {T}\)-symmetric scattering potentials which respect transmission reciprocity.

  20. 20.

    For a 2 × 2 matrix A, the condition of being σ 1-pseudo-unitary is equivalent to the requirement that \(e^{i\pi \boldsymbol {\sigma }_2/4}\mathbf {A} e^{-i\pi \boldsymbol {\sigma }_2/4}\) belong to the pseudo-unitary group U(1, 1), where σ 2 is the second Pauli matrix.

  21. 21.

    We use the term “eigenvalue” to mean an element of the point spectrum of H which has a square-integrable eigenfunction.

References

  1. Ahmed, Z.: New features of scattering from a one-dimensional non-Hermitian (complex) potential. J. Phys. A Math. Theor. 45, 032004 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  2. Bender, C.M., Boettcher, S.: Real spectra in non-Hermitian Hamiltonians having \(\mathbb {P}\mathbb {T}\) symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  3. Blashchak, V.A.: An analog of the inverse problem in the scattering for a non-self-conjugate operator I. J. Diff. Eq. 4, 1519–1533 (1968)

    MathSciNet  MATH  Google Scholar 

  4. Born, M., Wolf, E.: Principles of Optics. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  5. Boyce, W.E., DiPrima, R.C.: Elementary Differential Equations and Boundary Value Problems, 10th edn. Wiley, Hoboken (2012)

    MATH  Google Scholar 

  6. Chong, Y.D., Ge, L., Cao, H., Stone, A.D.: Coherent perfect absorbers: time-reversed lasers. Phys. Rev. Lett. 105, 053901 (2010)

    Article  ADS  Google Scholar 

  7. Chong, Y.D., Ge, L., Stone, A.D.: \(\mathbb {P}\mathbb {T}\)-symmetry breaking and laser-absorber modes in optical scattering systems. Phys. Rev. Lett. 106, 093902 (2011)

    Google Scholar 

  8. Devillard, P., Souillard, B.: Polynomially decaying transmission for the nonlinear Schrödinger equation in a random medium. J. Stat. Phys. 43, 423–439 (1986)

    Article  ADS  Google Scholar 

  9. Doğan, K., Mostafazadeh, A., Sarısaman, M.: Spectral singularities, threshold gain, and output intensity for a slab laser with mirrors. Preprint arXiv: 1710.02825, to appear in Ann. Phys. (N.Y.)

    Google Scholar 

  10. Flügge, S.: Practical Quantum Mechanics. Springer, Berlin (1999)

    MATH  Google Scholar 

  11. Ge, L., Chong, Y.D., Stone, A.D.: Conservation relations and anisotropic transmission resonances in one-dimensional \(\mathbb {P}\mathbb {T}\)-symmetric photonic heterostructures. Phys. Rev. A 85 023802 (2012)

    Google Scholar 

  12. Ghaemi-Dizicheh, H., Mostafazadeh, A., Sarısaman, M.: Nonlinear spectral singularities and laser output intensity. J. Opt. 19, 105601 (2017)

    Article  ADS  Google Scholar 

  13. Greenberg, M., Orenstein, M.: Irreversible coupling by use of dissipative optics. Opt. Lett. 29, 451–453 (2004)

    Article  ADS  Google Scholar 

  14. Guseinov, G.Sh.: On the concept of spectral singularities. Pramana J. Phys. 73, 587–603 (2009)

    Article  ADS  Google Scholar 

  15. Horsley, S.A.R., Longhi, S.: One-way invisibility in isotropic dielectric optical media. Am. J. Phys. 85, 439–446 (2017)

    Article  ADS  Google Scholar 

  16. Horsley, S.A.R., Artoni, M., La Rocca, G.C.: Spatial Kramers-Kronig relations and the reflection of waves. Nat. Photon. 9, 436–439 (2015)

    Article  ADS  Google Scholar 

  17. Hsu, C.W., Zhen, B., Stone, A.D., Joannopoulos, J.D., Soljačić, M.: Bound states in the continuum. Nat. Rev. Mater. 1, 16048 (2016)

    Article  ADS  Google Scholar 

  18. Jones, H.F.: Analytic results for a PT-symmetric optical structure. J. Phys. A Math. Theor. 45, 135306 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  19. Kalozoumis, P.A., Morfonios, C.V., Kodaxis, G., Diakonos, F.K., Schmelcher, P.: Emitter and absorber assembly for multiple self-dual operation and directional transparency. Appl. Phys. Lett. 110, 121106 (2017)

    Article  ADS  Google Scholar 

  20. Kay, I., Moses, H.E.: Reflectionless transmission through dielectrics and scattering potentials. J. Appl. Phys. 27, 1503–1508 (1956)

    Article  ADS  Google Scholar 

  21. Kemp, R.R.D.: A singular boundary value problem for a non-self-adjoint differential operator. Can. J. Math. 10, 447–462 (1958)

    Article  MathSciNet  Google Scholar 

  22. Konotop, V.V., Zezyulin, D.A.: Phase transition through the splitting of self-dual spectral singularity in optical potentials. Opt. Lett. 42, 5206–5209 (2017)

    Article  ADS  Google Scholar 

  23. Kulishov, M., Laniel, J.M., Belanger, N., Azana, J., Plant, D.V.: Nonreciprocal waveguide Bragg gratings. Opt. Exp. 13, 3068–3078 (2005)

    Article  ADS  Google Scholar 

  24. Lamb, G.L.: Elements of Soliton Theory. Wiley, New York (1980)

    MATH  Google Scholar 

  25. Lin, Z., Ramezani, H., Eichelkraut, T., Kottos, T., Cao, H., Christodoulides, D.N.: Unidirectional invisibility induced by PT-symmetric periodic structures. Phys. Rev. Lett. 106, 213901 (2011)

    Article  ADS  Google Scholar 

  26. Liu, X., Dutta Gupta, S., Agarwal, G.S.: Regularization of the spectral singularity in \(\mathbb {P}\mathbb {T}\)-symmetric systems by all-order nonlinearities: nonreciprocity and optical isolation. Phys. Rev. A 89, 013824 (2014)

    Google Scholar 

  27. Longhi, S.: Backward lasing yields a perfect absorber. Physics 3, 61 (2010)

    Article  Google Scholar 

  28. Longhi, S.: \(\mathbb {P}\mathbb {T}\)-symmetric laser absorber. Phys. Rev. A 82, 031801 (2010)

    Google Scholar 

  29. Longhi, S.: Invisibility in PT-symmetric complex crystals. J. Phys. A Math. Theor. 44, 485302 (2011)

    Article  MathSciNet  Google Scholar 

  30. Longhi, S.: Wave reflection in dielectric media obeying spatial Kramers-Kronig relations. EPL 112, 64001 (2015)

    Article  ADS  Google Scholar 

  31. Loran, F., Mostafazadeh, A.: Transfer matrix formulation of scattering theory in two and three dimensions. Phys. Rev. A 93, 042707 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  32. Loran, F., Mostafazadeh, A.: Unidirectional invisibility and nonreciprocal transmission in two and three dimensions. Proc. R. Soc. A 472, 20160250 (2016)

    Article  ADS  Google Scholar 

  33. Loran, F., Mostafazadeh, A.: Class of exactly solvable scattering potentials in two dimensions, entangled-state pair generation, and a grazing-angle resonance effect. Phys. Rev. A 96, 063837 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  34. Loran, F., Mostafazadeh, A.: Perfect broad-band invisibility in isotropic media with gain and loss. Opt. Lett. 42, 5250–5253 (2017)

    Article  ADS  Google Scholar 

  35. Messiah, A.: Quantum Mechanics. Dover, New York (1999)

    MATH  Google Scholar 

  36. Mostafazadeh, A.: Pseudounitary operators and pseudounitary quantum dynamics. J. Math. Phys. 45, 932–946 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  37. Mostafazadeh, A.: Delta-function potential with a complex coupling. J. Phys. A Math. Gen. 39, 13495–13506 (2006)

    Article  MathSciNet  Google Scholar 

  38. Mostafazadeh, A.: Spectral singularities of complex scattering potentials and infinite reflection and transmission coefficients at real energies. Phys. Rev. Lett. 102, 220402 (2009)

    Article  ADS  Google Scholar 

  39. Mostafazadeh, A.: Pseudo-Hermitian representation of quantum mechanics. Int. J. Geom. Meth. Mod. Phys. 7, 1191–1306 (2010)

    Article  MathSciNet  Google Scholar 

  40. Mostafazadeh, A.: Optical spectral singularities as threshold resonances. Phys. Rev. A 83, 045801 (2011)

    Article  ADS  Google Scholar 

  41. Mostafazadeh, A.: Spectral singularities of a general point interaction. J. Phys. A Math. Theor. 44, 375302 (2011)

    Article  MathSciNet  Google Scholar 

  42. Mostafazadeh, A.: Self-dual spectral singularities and coherent perfect absorbing lasers without \(\mathbb {P}\mathbb {T}\)-symmetry. J. Phys. A Math. Gen. 45, 444024 (2012)

    Google Scholar 

  43. Mostafazadeh, A.: Invisibility and \(\mathbb {P}\mathbb {T}\)-symmetry. Phys. Rev. A 87, 012103 (2013)

    Google Scholar 

  44. Mostafazadeh, A.: Nonlinear spectral singularities for confined nonlinearities. Phys. Rev. Lett. 110, 260402 (2013)

    Article  ADS  Google Scholar 

  45. Mostafazadeh, A.: Pseudo-Hermitian quantum mechanics with unbounded metric operators. Philos. Trans. R. Soc. A 371, 20120050 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  46. Mostafazadeh, A.: Transfer matrices as non-unitary S-matrices, multimode unidirectional invisibility, and perturbative inverse scattering. Phys. Rev. A 89, 012709 (2014)

    Article  ADS  Google Scholar 

  47. Mostafazadeh, A.: Unidirectionally invisible potentials as local building blocks of all scattering potentials. Phys. Rev. A 90, 023833 (2014)

    Article  ADS  Google Scholar 

  48. Mostafazadeh, A.: Generalized unitarity and reciprocity relations for \(\mathbb {P}\mathbb {T}\)-symmetric scattering potentials. J. Phys. A Math. Theor. 47, 505303 (2014)

    Google Scholar 

  49. Mostafazadeh, A.: Physics of spectral singularities. In: Proceedings of XXXIII Workshop on Geometric Methods in Physics, Held in Bialowieza, 29 June–5 July 2014, Trends in Mathematics, pp. 145–165. Springer International Publishing, Switzerland (2015); preprint arXiv:1412.0454

    Google Scholar 

  50. Mostafazadeh, A.: Point interactions, metamaterials, and \(\mathbb {P}\mathbb {T}\)-symmetry. Ann. Phys. (NY) 368, 56–69 (2016)

    Google Scholar 

  51. Mostafazadeh, A.: Dynamical theory of scattering, exact unidirectional invisibility, and truncated \(\mathfrak {z}~e^{2ik_0x}\) potential. J. Phys. A Math. Theor. 49 445302 (2016)

    Google Scholar 

  52. Mostafazadeh, A.: Generalized unitarity relation for linear scattering systems in one dimension. Preprint arXiv:1711.04003

    Google Scholar 

  53. Mostafazadeh, A., Oflaz, N.: Unidirectional reflection and invisibility in nonlinear media withanincoherent nonlinearity. Phys. Lett. A 381, 3548–3552 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  54. Mostafazadeh, A., Rostamzadeh, S.: Perturbative analysis of spectral singularities and their optical realizations. Phys. Rev. A 86, 022103 (2012)

    Article  ADS  Google Scholar 

  55. Mostafazadeh, A., Sarısaman, M.: Spectral singularities of a complex spherical barrier potential and their optical realization. Phys. Lett. A 375, 3387–3391 (2011)

    Article  ADS  Google Scholar 

  56. Mostafazadeh, A., Sarısaman, M.: Optical spectral singularities and coherent perfect absorption in a two-layer spherical medium. Proc. R. Soc. A 468, 3224–3246 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  57. Mostafazadeh, A., Sarısaman, M.: Spectral singularities and whispering gallery modes of a cylindrical gain medium. Phys. Rev. A 87, 063834 (2013)

    Article  ADS  Google Scholar 

  58. Mostafazadeh, A., Sarısaman, M.: Spectral singularities in the surface modes of a spherical gain medium. Phys. Rev. A 88, 033810 (2013)

    Article  ADS  Google Scholar 

  59. Muga, J.G., Palao, J.P., Navarro, B., Egusquiza, I.L.: Complex absorbing potentials. Phys. Rep. 395, 357–426 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  60. Naimark, M.A.: Investigation of the spectrum and the expansion in eigenfunctions of a non-selfadjoint differential operator of the second order on a semi-axis. Am. Math. Soc. Transl. 16, 103–193 (1960). This is the English translation of M. A. Naimark, Trudy Moscov. Mat. Obsc. 3 181–270 (1954)

    Google Scholar 

  61. Poladian, L.: Resonance mode expansions and exact solutions for nonuniform gratings. Phys. Rev. E 54, 2963–2975 (1996)

    Article  ADS  Google Scholar 

  62. Prugove\(\check {\mathrm {c}} \)ki, E.: Quantum Mechanics in Hilbert Space. Academic, New York (1981)

    Google Scholar 

  63. Razavy, M.: Quantum Theory of Tunneling. World Scientific, Singapore (2003)

    Book  Google Scholar 

  64. Reed, M., Simon, B.: Methods of Modern Mathematical Physics: Volume 1 Functional Analysis. Academic, San Diego (1980)

    MATH  Google Scholar 

  65. Ruschhaupt, A., Dowdall1, T., Simón, M.A., Muga, J.G.: Asymmetric scattering by non-Hermitian potentials. EPL 120, 20001 (2017)

    Article  ADS  Google Scholar 

  66. Sánchez-Soto, L.L., Monzóna, J.J., Barriuso, A.G., Cariñena, J.F.: The transfer matrix: a geometrical perspective. Phys. Rep. 513, 191–227 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  67. Sarısaman, M.: Unidirectional reflectionlessness and invisibility in the TE and TM modes of a PT-symmetric slab system. Phys. Rev. A 95, 013806 (2017)

    Article  ADS  Google Scholar 

  68. Schechter, M.: Operator Methods in Quantum Mechanics. Dover, New York (2002)

    MATH  Google Scholar 

  69. Schwartz, J.: Some non-selfadjoint operators. Commun. Pure. Appl. Math. 13, 609–639 (1960)

    Article  MathSciNet  Google Scholar 

  70. Seigert, A.J.F.: On derivation of the dispersion formula for nuclear reactions. Phys. Rev. 56, 750–752 (1939)

    Article  ADS  Google Scholar 

  71. Silfvast, W.T.: Laser Fundamentals. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  72. Stillinger, F.H., Herrick, D.R.: Bound states in the continuum. Phys. Rev. A 11, 446–454 (1975)

    Article  ADS  Google Scholar 

  73. Türeci, H.E., Stone, A.D., Collier, B.: Self-consistent multimode lasing theory for complex or random lasing media. Phys. Rev. A 74, 043822 (2006)

    Article  ADS  Google Scholar 

  74. Vu, P.L.: Explicit complex-valued solutions of the Korteweg–deVries equation on the half-line and on the whole-line. Acta Appl. Math. 49, 107–149 (1997)

    Article  MathSciNet  Google Scholar 

  75. Wan, W., Chong, Y., Ge, L., Noh, H., Stone, A.D., Cao, H.: Time-reversed lasing and interferometric control of absorption. Science 331, 889–892 (2011)

    Article  ADS  Google Scholar 

  76. Weinberg, S.: Quantum Theory of Fields, Vol. I. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  77. Wong, Z.J., Xu, Y.-L., Kim, J., O’Brien, K., Wang, Y., Feng, L., Zhang, X.: Lasing and anti-lasing in a single cavity. Nat. Photon 10, 796–801 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author is indebted to Keremcan Doğan, Sasan HajiZadeh, and Neslihan Oflaz for their help in locating a large number of typos in the first draft of the manuscript. This work has been supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK) in the framework of the project no: 114F357 and by Turkish Academy of Sciences (TÜBA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Mostafazadeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mostafazadeh, A. (2018). Scattering Theory and \(\mathbb {P}\mathbb {T}\)-Symmetry. In: Christodoulides, D., Yang, J. (eds) Parity-time Symmetry and Its Applications. Springer Tracts in Modern Physics, vol 280. Springer, Singapore. https://doi.org/10.1007/978-981-13-1247-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1247-2_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1246-5

  • Online ISBN: 978-981-13-1247-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics