Skip to main content

Parity-Time Symmetry in Scattering Problems

  • Chapter
  • First Online:
Parity-time Symmetry and Its Applications

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 280))

Abstract

The realization that non-Hermitian parity-time (PT) symmetric Hamiltonians can exhibit entirely real spectra has raised considerable interest in the physics and engineering communities. In the context of optics and photonics, in particular, mathematical analogies with quantum mechanical problem have enabled several breakthrough in terms of observing and utilizing PT-symmetry in closed guided-wave systems. On the other hand, less attention has been paid to the scattering behavior of open PT-symmetric systems. In this chapter, we consider canonical PT-symmetric open systems and explore some of the scattering characteristics of coupled waveguide cavity arrangements. In this regard, we show how an open PT-symmetric configuration can be compared to a closed system, and how the scattering properties are related to the spectral properties of the PT-symmetric system and the associated phase transitions. Afterwards, different scattering geometries are explored in one, two and three dimensions. In addition, we review recent investigations on this topic and highlight opportunities for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Makris, K.G., El-Ganainy, R., Christodoulides, D.N., Musslimani, Z.H.: Beam dynamics in PT-symmetric symmetric optical lattices. Phys. Rev. Lett. 100, 103904 (2008)

    Article  ADS  Google Scholar 

  2. Klaiman, S., Guenther, U., Moiseyev, N.: Visualization of branch points in PT-symmetric waveguides. Phys. Rev. Lett. 101, 080402 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  3. Longhi, S.: Bloch oscillations in complex crystals with PT-symmetric symmetry. Phys. Rev. Lett. 103, 123601 (2009)

    Article  ADS  Google Scholar 

  4. Rüter, C.E., Makris, K.G., El-Ganainy, R., Christodoulides, D.N., Segev, M., Kip, D.: Observation of parity-time symmetry in optics. Nat. Phys. 6, 192–195 (2010)

    Article  Google Scholar 

  5. Regensburger, A., Bersch, C., Miri, M.-A., Onishchukov, G., Christodoulides, D.N., Peschel, U.: Parity-time synthetic photonic lattices. Nature. 488, 167–171 (2012)

    Article  ADS  Google Scholar 

  6. Feng, L., Xu, Y.L., Fegadolli, W.S., Lu, M.H., Oliveira, J.E., Almeida, V.R., Chen, Y.-F., Scherer, A.: Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. Nat. Mater. 12, 108–113 (2013)

    Article  ADS  Google Scholar 

  7. Peng, B., Özdemir, Ş.K., Lei, F., Monifi, F., Gianfreda, M., Long, G.L., Fan, S., Nori, F., Bender, C.M., Yang, L.: Parity–time-symmetric whispering-gallery microcavities. Nat. Phys. 10, 394–398 (2014)

    Article  Google Scholar 

  8. Wong, Z.J., Xu, Y.L., Kim, J., O’Brien, K., Wang, Y., Feng, L., Zhang, X.: Lasing and anti-lasing in a single cavity. Nat. Photon. 10, 796–801 (2016)

    Article  ADS  Google Scholar 

  9. Bender, C.M., Boettcher, S.: Real spectra in non-Hermitian Hamiltonians having PT-symmetric symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  10. Lévai, G., Znojil, M.: Systematic search for PT-symmetric potentials with real energy spectra. J. Phys. Math. Gen. 33, 7165–7180 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  11. Ahmed, Z.: Real and complex discrete eigenvalues in an exactly solvable one-dimensional complex PT-symmetric invariant potential. Phys. Lett. A. 282, 343–348 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  12. Bender, C.M., Brody, D.C., Jones, H.F.: Complex extension of quantum mechanics. Phys. Rev. Lett. 89, 270401 (2002)

    Article  MathSciNet  Google Scholar 

  13. Mostafazadeh, A.: Pseudo-Hermiticity versus PT-symmetric symmetry: the necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian. J. Math. Phys. 43, 205–214 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  14. Haus, H.A.: Waves and Fields in Optoelectronics. Prentice-Hall, Englewood Cliffs (1984)

    Google Scholar 

  15. Suh, W., Wang, Z., Fan, S.: Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities. IEEE J. Quant. Electron. 40, 1511 (2004)

    Article  ADS  Google Scholar 

  16. Chong, Y.D., Ge, L., Stone, A.D.: PT-symmetry breaking and laser-absorber modes in optical scattering systems. Phys. Rev. Lett. 106, 093902 (2012)

    Article  ADS  Google Scholar 

  17. Ge, L., Chong, Y.D., Stone, A.D.: Conservation relations and anisotropic transmission resonances in one-dimensional PT-symmetric photonic heterostructures. Phys. Rev. A. 85, 023802 (2012)

    Article  ADS  Google Scholar 

  18. Longhi, S.: PT-symmetric laser absorber. Phys. Rev. A. 82, 031801 (2010)

    Article  ADS  Google Scholar 

  19. Wong, Z.J., Xu, Y.L., Kim, J., O’Brien, K., Wang, Y., Feng, L., Zhang, X.: Lasing and anti-lasing in a single cavity. Nat. Photon. 10, 796–801 (2016)

    Article  ADS  Google Scholar 

  20. Lin, Z., Ramezani, H., Eichelkraut, T., Kottos, T., Cao, H., Christodoulides, D.N.: Unidirectional invisibility induced by PT-symmetric periodic structures. Phys. Rev. Lett. 106, 213901 (2011)

    Article  ADS  Google Scholar 

  21. Kulishov, M., Laniel, J.M., Bélanger, N., Azaña, J., Plant, D.V.: Nonreciprocal waveguide Bragg gratings. Opt. Express. 13, 3068 (2005)

    Article  ADS  Google Scholar 

  22. Feng, L., Xu, Y.L., Fegadolli, W.S., Lu, M.H., Oliveira, J.E., Almeida, V.R., Chen, Y.-F., Scherer, A.: Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. Nat. Mater. 12, 108–113 (2013)

    Article  ADS  Google Scholar 

  23. Regensburger, A., Bersch, C., Miri, M.-A., Onishchukov, G., Christodoulides, D.N., Peschel, U.: Parity–time synthetic photonic lattices. Nature. 488, 167–171 (2012)

    Article  ADS  Google Scholar 

  24. Miri, M.-A., Aceves, A.B., Kottos, T., Kovanis, V., Christodoulides, D.N.: Bragg solitons in nonlinear PT-symmetric periodic potentials. Phys. Rev. A. 86, 033801 (2012)

    Article  ADS  Google Scholar 

  25. Castaldi, G., Savoia, S., Galdi, V., Alù, A., Engheta, N.: PT-symmetric metamaterials via complex-coordinate transformation optics. Phys. Rev. Lett. 110, 173901 (2013)

    Article  ADS  Google Scholar 

  26. Miri, M.-A., Eftekhar, M.A., Facao, M., Abouraddy, A.F., Bakry, A., Razvi, M.A., Alshahrie, A., Alù, A., Christodoulides, D.N.: Scattering properties of PT-symmetric objects. J. Opt. 18, 075104 (2016)

    Article  ADS  Google Scholar 

  27. Bohren, C.F., Huffman, D.R.: Absorption and Scattering of Light by Small Particles, vol. 98. Wiley, London (1983)

    Google Scholar 

  28. Waterman, P.C.: Symmetry, unitarity, and geometry in electromagnetic scattering. Phys. Rev. D. 3, 825–839 (1971)

    Article  ADS  Google Scholar 

  29. Peterson, B., Ström, S.: T matrix for electromagnetic scattering from an arbitrary number of scatterers and representations of E(3). Phys. Rev. D. 8, 3661–3678 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  30. Capolino, F. (ed.): Theory and phenomena of metamaterials. CRC Press/Taylor & Francis Group, Boca Raton (2009)

    Google Scholar 

  31. Duggan, R., Miri, M.-A., Alu, A. Scattering properties of parity-time symmetric nanoparticle dimers. In: IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1067, San Diego, CA (2017)

    Google Scholar 

  32. Manjavacas, A.: Anisotropic optical response of nanostructures with balanced gain and loss. ACS Photon. 3, 1301–1307 (2016)

    Article  Google Scholar 

  33. Campione, S., Albani, M., Capolino, F.: Complex modes and near-zero permittivity in 3D arrays of plasmonic nanoshells: loss compensation using gain. Opt. Mater. Express. 1, 1077 (2011)

    Article  ADS  Google Scholar 

  34. Chua, S.-L., Chong, Y., Stone, A.D., Soljacic, M., Bravo-Abad, J.: Low-threshold lasing action in photonic crystal slabs enabled by Fano resonances. Opt. Express. 19, 1539–1562 (2011)

    Article  ADS  Google Scholar 

  35. Ling, C.W., Choi, K.H., Mok, T.C., Zhang, Z.-Q., Fung, K.H.: Anomalous light scattering by topological PT-symmetric -symmetric particle arrays. Sci. Rep. 6, 38049 (2016)

    Article  ADS  Google Scholar 

  36. Chen, X., Yue, W., Tao, R., Yao, P., Liu, W.: Scattering phenomenon of PT-symmetric dielectric-nanosphere structure. Phys. Rev. A. 94, 53829 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Office of Naval Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Alù .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miri, MA., Duggan, R.S., Alù, A. (2018). Parity-Time Symmetry in Scattering Problems. In: Christodoulides, D., Yang, J. (eds) Parity-time Symmetry and Its Applications. Springer Tracts in Modern Physics, vol 280. Springer, Singapore. https://doi.org/10.1007/978-981-13-1247-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1247-2_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1246-5

  • Online ISBN: 978-981-13-1247-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics