Skip to main content

PT-Symmetry on-a-Chip: Harnessing Optical Loss for Novel Integrated Photonic Functionality

  • Chapter
  • First Online:
Parity-time Symmetry and Its Applications

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 280))

  • 2654 Accesses

Abstract

The development of non-Hermitian parity-time (PT) symmetric quantum mechanics has offered a powerful platform to engineer novel device functionality for integrated photonics. In this chapter, we review the chip-scale applications of PT-symmetry in photonic devices, including the implementation of the unidirectional reflectionless PT metamaterial, coherent asymmetric light-light switching, and orbital angular momentum (OAM) laser on-chip. We study the optical analogy of non-Hermitian PT systems, manipulate the complex refractive index properties such as gain/loss modulation, and investigate the unique wave transport characteristics near the exceptional point (EP) to achieve these intriguing on-chip functionalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Reference

  1. Bender, C.M., Boettcher, S.: Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  2. Bender, C.M.: Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70, 947–1018 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bender, C.M., Brody, D.C., Jones, H.F.: Extension of PT-symmetric quantum mechanics to quantum field theory with cubic interaction. Phys. Rev. D. 70, 025001 (2004)

    Article  ADS  Google Scholar 

  4. Rotter, I.: A non-Hermitian Hamilton operator and the physics of open quantum systems. J. Phys. A. 42, 1_51 (2009)

    Article  MathSciNet  Google Scholar 

  5. Rüter, C.E., et al.: Observation of parity–time symmetry in optics. Nat. Phys. 6, 192–195 (2010)

    Article  Google Scholar 

  6. Chang, L., et al.: Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators. Nat. Photon. 8, 524–529 (2014)

    Article  ADS  Google Scholar 

  7. Regensburger, A., et al.: Parity-time synthetic photonic lattices. Nature. 488, 167–171 (2012)

    Article  ADS  Google Scholar 

  8. Musslimani, Z.H., et al.: Optical solitons in P T periodic potentials. Phys. Rev. Lett. 100, 030402 (2008)

    Article  ADS  Google Scholar 

  9. Ahmed, Z.: Schrödinger transmission through one-dimensional complex potentials. Phys. Rev. A. 64, 042716 (2001)

    Article  ADS  Google Scholar 

  10. Mostafazadeh, A.: Pseudo-Hermiticity versus PT symmetry: the necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian. J. Math. Phys. 43, 205–214 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  11. Schindler, J., Li, A., Zheng, M.C., Ellis, F.M., Kottos, T.: Experimental study of active LRC circuits with PT symmetries. Phys. Rev. A. 84, 040101R (2011)

    Article  ADS  Google Scholar 

  12. Guo, A., et al.: Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009)

    Article  ADS  Google Scholar 

  13. Musslimani, Z.H., El-Ganainy, R., Makris, K.G., Christodoulides, D.N.: Optical solitons in PT periodic potentials. Phys. Rev. Lett. 100, 030402 (2008)

    Article  ADS  Google Scholar 

  14. Longhi, S.: Bloch oscillations in complex crystals with PT symmetry. Phys. Rev. Lett. 103, 123601 (2009)

    Article  ADS  Google Scholar 

  15. Klaiman, S., Guenther, U., Moiseyev, N.: Visualization of branch points in PT symmetric waveguides. Phys. Rev. Lett. 101, 080402 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  16. Graefe, E.M., Jones, H.F.: PT-symmetric sinusoidal optical lattices at the symmetry-breaking threshold. Phys. Rev. A. 84, 013818 (2011)

    Article  ADS  Google Scholar 

  17. Ge, L., et al.: Unconventional modes in lasers with spatially varying gain and loss. Phys. Rev. A. 84, 023820 (2011)

    Article  ADS  Google Scholar 

  18. Feng, L., et al.: Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. Nat. Mat. 12, 108–113 (2013)

    Article  Google Scholar 

  19. Zhao, H., et al.: Metawaveguide for asymmetric interferometric light-light switching. Phys. Rev. Lett. 117, 193901 (2016)

    Article  ADS  Google Scholar 

  20. Miao, P., et al.: Orbital angular momentum microlaser. Science. 353, 464–467 (2016)

    Article  ADS  Google Scholar 

  21. Cannata, F., Dedonder, J.-P., Ventura, A.: Scattering in PT-symmetric quantum mechanics. Ann. Phys. 322, 397–433 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  22. Fang, X., MacDonald, K.F., Zheludev, N.I.: Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor. Light. Sci. Appl. 4(5), e292 (2015)

    Article  ADS  Google Scholar 

  23. Chong, Y.D., et al.: Coherent perfect absorbers: time-reversed lasers. Phys. Rev. Lett. 105, 053901 (2010)

    Article  ADS  Google Scholar 

  24. Chong, Y.D., Ge, L., Douglas Stone, A.: PT-symmetry breaking and laser-absorber modes in optical scattering systems. Phys. Rev. Lett. 106, 093902 (2011)

    Article  ADS  Google Scholar 

  25. Wan, W., et al.: Time-reversed lasing and interferometric control of absorption. Science. 331, 889–892 (2011)

    Article  ADS  Google Scholar 

  26. Longhi, S.: PT-symmetric laser absorber. Phys. Rev. A. 82, 031801 (2010)

    Article  ADS  Google Scholar 

  27. Allen, L., et al.: Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A. 45, 8185 (1992)

    Article  ADS  Google Scholar 

  28. Guo, Q., et al.: Line degeneracy and strong spin-orbit coupling of light with bulk bianisotropic metamaterials. Phys. Rev. Lett. 115, 067402 (2015)

    Article  ADS  Google Scholar 

  29. Franke-Arnold, S., et al.: Rotary photon drag enhanced by a slow-light medium. Science. 333, 65–67 (2011)

    Article  ADS  Google Scholar 

  30. Franke-Arnold, S., et al.: Uncertainty principle for angular position and angular momentum. New J. Phys. 6, 103 (2004)

    Article  ADS  Google Scholar 

  31. Bozinovic, N., et al.: Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science. 340, 1545–1548 (2013)

    Article  ADS  Google Scholar 

  32. Yao, A.M., Padgett, M.J.: Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photon. 3, 161–204 (2011)

    Article  Google Scholar 

  33. Lin, D., et al.: Dielectric gradient metasurface optical elements. Science. 345, 298–302 (2014)

    Article  ADS  Google Scholar 

  34. Peng, B., et al.: Parity-time-symmetric whispering-gallery microcavities. Nat. Phys. 10, 394–398 (2014)

    Article  Google Scholar 

  35. Brandstetter, M., et al.: Reversing the pump dependence of a laser at an exceptional point. Nat. Commun. 5, 4032 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Feng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pan, M., Miao, P., Zhao, H., Zhang, Z., Feng, L. (2018). PT-Symmetry on-a-Chip: Harnessing Optical Loss for Novel Integrated Photonic Functionality. In: Christodoulides, D., Yang, J. (eds) Parity-time Symmetry and Its Applications. Springer Tracts in Modern Physics, vol 280. Springer, Singapore. https://doi.org/10.1007/978-981-13-1247-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1247-2_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1246-5

  • Online ISBN: 978-981-13-1247-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics