Skip to main content

Krein Signature in Hamiltonian and \(\mathbb {PT}\)-Symmetric Systems

  • Chapter
  • First Online:
Parity-time Symmetry and Its Applications

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 280))

Abstract

We explain the concept of Krein signature in Hamiltonian and \(\mathbb {PT}\)-symmetric systems on the case study of the one-dimensional Gross–Pitaevskii equation with a real harmonic potential and an imaginary linear potential. These potentials correspond to the magnetic trap, and a linear gain/loss in the mean-field model of cigar-shaped Bose–Einstein condensates. For the linearized Gross–Pitaevskii equation, we introduce the real-valued Krein quantity, which is nonzero if the eigenvalue is neutrally stable and simple and zero if the eigenvalue is unstable. If the neutrally stable eigenvalue is simple, it persists with respect to perturbations. However, if it is multiple, it may split into unstable eigenvalues under perturbations. A necessary condition for the onset of instability past the bifurcation point requires existence of two simple neutrally stable eigenvalues of opposite Krein signatures before the bifurcation point. This property is useful in the parameter continuations of neutrally stable eigenvalues of the linearized Gross–Pitaevskii equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achilleos, V., Kevrekidis, P.G., Frantzeskakis, D.J., Carretero-González, R.: Dark solitons and vortices in \(\mathbb {PT}\)-symmetric nonlinear media: from spontaneous symmetry breaking to nonlinear \(\mathbb {PT}\) phase transitions. Phys. Rev. A 86, 013808 (7pp) (2012)

    Google Scholar 

  2. Alexeeva, N.V., Barashenkov, I.V., Sukhorukov, A.A., Kivshar, Yu.S.: Optical solitons in \(\mathbb {PT}\)-symmetric nonlinear couplers with gain and loss. Phys. Rev. A 85, 063837 (13pp) (2012)

    Google Scholar 

  3. Alexeeva, N.V., Barashenkov, I.V., Kivshar, Yu.S.: Solitons in \(\mathbb {PT}\)-symmetric ladders of optical waveguides. New J. Phys. 19, 113032 (30pp) (2017)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bender, C.M.: Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70, 947–1018 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bender, C.M., Berntson, B.K., Parker, D., Samuel, E.: Observation of \(\mathbb {PT}\) phase transition in a simple mechanical system. Am. J. Phys. 81, 173–179 (2013)

    Google Scholar 

  6. Bender, C.M., Boettcher, S.: Real spectra in non-Hermitian Hamiltonians having \(\mathbb {PT}\) Symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  7. Bender, C.M., Brody, D.C., Jones, H.F.: Complex extension of quantum mechanics. Phys. Rev. Lett. 89, 270401 (4pp) (2002)

    Google Scholar 

  8. Busch, Th., Anglin, J.R.: Motion of dark solitons in trapped Bose-Einstein condensates. Phys. Rev. Lett. 84, 2298–2301 (2000)

    Article  ADS  Google Scholar 

  9. Carretero-González, R., Frantzeskakis, D.J., Kevrekidis, P.G.: Nonlinear waves in Bose–Einstein condensates: physical relevance and mathematical techniques. Nonlinearity 21, R139–R202 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  10. Cartarius, H., Wunner, G.: Model of a PT-symmetric Bose-Einstein condensate in a δ-function double-well potential. Phys. Rev. A 86, 013612 (5pp) (2012)

    Google Scholar 

  11. Chernyavsky, A., Pelinovsky, D.E.: Breathers in Hamiltonian \(\mathbb {PT}\)-symmetric chains of coupled pendula under a resonant periodic force. Symmetry 8, 59 (26pp) (2016)

    Article  MathSciNet  Google Scholar 

  12. Chernyavsky, A., Pelinovsky, D.E.: Long-time stability of breathers in Hamiltonian PT-symmetric lattices. J. Phys. A Math. Theor. 49, 475201 (20pp) (2016)

    Google Scholar 

  13. Chernyavsky, A., Pelinovsky, D.E.: Krein signature for instability of \(\mathbb {PT}\)-symmetric states. Phys. D 371, 48–59 (2018)

    MathSciNet  MATH  Google Scholar 

  14. Chugunova, M., Pelinovsky, D.: Count of eigenvalues in the generalized eigenvalue problem. J. Math. Phys. 51, 052901 (19pp) (2010)

    Article  ADS  MathSciNet  Google Scholar 

  15. Coles, M.P., Pelinovsky, D.E., Kevrekidis, P.G.: Excited states in the large density limit: a variational approach. Nonlinearity 23, 1753–1770 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  16. Crandall, M.G., Rabinowitz, P.H.: Bifurcation from simple eigenvalues. J. Funct. Anal. 8, 321–340 (1971)

    Article  MathSciNet  Google Scholar 

  17. D’Ambroise, J., Kevrekidis, P.G.: Existence, stability, and dynamics of nonlinear modes in a 2D partially \(\mathbb {PT}\) symmetric potential. Appl. Sci. 7, 223 (10pp) (2017)

    Google Scholar 

  18. Dast, D., Haag, D., Cartarius, H., Main, J., Wunner, G.: Eigenvalue structure of a Bose–Einstein condensate in a \(\mathbb {PT}\)-symmetric double well. J. Phys. A Math. Theor. 46, 375301 (19pp) (2013)

    Google Scholar 

  19. Dohnal, T., Siegl, P.: Bifurcation of eigenvalues in nonlinear problems with antilinear symmetry. J. Math. Phys. 57, 093502 (18pp) (2016)

    Article  ADS  MathSciNet  Google Scholar 

  20. Feder, D.L., Pindzola, M.S., Collins, L.A., Schneider, B.I., Clark, C.W.: Dark-soliton states of Bose-Einstein condensates in anisotropic traps. Phys. Rev. A 62, 053606 (11pp) (2000)

    Google Scholar 

  21. Gallo, C., Pelinovsky, D.E.: On the Thomas–Fermi approximation of the ground state in a \(\mathbb {PT}\)-symmetric confining potential. Stud. Appl. Math. 133, 398–421 (2014)

    Google Scholar 

  22. Heffler, B.: Spectral Theory and its Applications. Cambridge Studies in Advanced Mathematics, vol. 185. Cambridge University Press, Berlin (2013)

    Google Scholar 

  23. Kapitula, T., Kevrekidis, P.G., Sanstede, B.: Counting eigenvalues via the Krein signature in infinite-dimensional Hamiltonian systems. Phys. D 195, 263–282 (2004)

    Article  MathSciNet  Google Scholar 

  24. Kapitula, T., Promislow, K.: Stability indices for constrained self-adjoint operators. Proc. Am. Math. Soc. 140, 865–880 (2012)

    Article  MathSciNet  Google Scholar 

  25. Kapitula, T., Promislow, K.: Spectral and dynamical stability of nonlinear waves. Appl. Math. Sci. vol. 185. Springer, Berlin (2013)

    Google Scholar 

  26. Knopp, K.: Theory of Functions, Part II. Dover, New York (1947)

    Google Scholar 

  27. Kevrekidis, P.G., Carretero-González, R., Frantzeskakis, D.J.: Stability of single and multiple matter-wave dark solitons in collisionally inhomogeneous Bose-Einstein condensates. Int. J. Mod. Phys. B 31, 1742013 (12pp) (2017)

    Article  ADS  MathSciNet  Google Scholar 

  28. Kevrekidis, P.G., Frantzeskakis, D.J., Carretero-González, R.: The Defocusing Nonlinear Schrödinger Equation: From Dark Solitons to Vortices and Vortex Rings. SIAM, Philadelphia (2015)

    Book  Google Scholar 

  29. Kevrekidis, P.G., Pelinovsky, D.E.: Distribution of eigenfrequencies for oscillations of the ground state in the Thomas-Fermi limit. Phys. Rev. A 81, 023627 (5pp) (2010)

    Google Scholar 

  30. Kevrekidis, P.G., Pelinovsky, D.E., Tyugin, D.Y.: Nonlinear stationary states in PT-symmetric lattices. SIAM J. Appl. Dynam. Syst. 12, 1210–1236 (2013)

    Article  MathSciNet  Google Scholar 

  31. Kollár, R., Miller, P.: Graphical Krein signature theory and Evans–Krein functions. SIAM Rev. 56, 73–123 (2014)

    Article  MathSciNet  Google Scholar 

  32. Konotop, V.V., Yang, J., Zezyulin, D.A.: Nonlinear waves in \(\mathbb {PT}\)-symmetric systems. Rev. Mod. Phys. 88, 035002 (59pp) (2016)

    Google Scholar 

  33. Konotop, V.V., Zezyulin, D.A.: Families of stationary modes in complex potentials. Opt. Lett. 39, 5535–5538 (2014)

    Article  ADS  Google Scholar 

  34. MacKay, R.S.: Stability of equilibria of Hamiltonian systems. In: Sarkar S (ed.) Nonlinear Phenomena and Chaos (Malvern, 1985). Malvern Physics Series. Hilger, Bristol (1986)

    Google Scholar 

  35. Nixon, S., Yang, J.: Nonlinear wave dynamics near phase transition in \(\mathbb {PT}\)-symmetric localized potentials. Phys. D 331, 48–57 (2016)

    MathSciNet  MATH  Google Scholar 

  36. Nixon, S.D., Yang, J.: Bifurcation of soliton families from linear modes in Non-\(\mathbb {PT}\)-symmetric complex potentials. Stud. Appl. Math. 136, 459–483 (2016)

    Google Scholar 

  37. Pelinovsky, D.E.: Inertia law for spectral stability of solitary waves in coupled nonlinear Schrödinger equations. Proc. R. Soc. A 461, 783–812 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  38. Pelinovsky, D.: Asymptotic properties of excited states in the Thomas-Fermi limit. Nonlinear Anal. 73, 2631–2643 (2010)

    Article  MathSciNet  Google Scholar 

  39. Pelinovsky, D.E.: Localization in Periodic Potentials: From Schrödinger Operators to the Gross–Pitaevskii Equation. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  40. Pelinovsky, D.E., Frantzeskakis, D., Kevrekidis, P.G.: Oscillations of dark solitons in trapped Bose-Einstein condensates. Phys. Rev. E 72, 016615 (12pp) (2005)

    Google Scholar 

  41. Pelinovsky, D.E., Yang, J.: Instabilities of multihump vector solitons in coupled nonlinear Schrödinger equations. Stud. Appl. Math. 115, 109–137 (2005)

    Article  MathSciNet  Google Scholar 

  42. Pethick, C.J., Smith, H.: Bose-Einstein Condensation in Dilute Gases. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  43. Pitaevskii, L., Stringari, S.: Bose–Einstein Condensation. International Series of Monographs on Physics, vol. 116. Oxford University Press, New York (2003)

    Google Scholar 

  44. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. vol. 4: Analysis of Operators. Academic Press, New York (1978)

    Google Scholar 

  45. Rüter, C.E., Makris, K.G., El-Ganainy, R., Christodoulides, D.N., Segev, M., Kip, D.: Observation of parity-time symmetry in optics. Nat. Phys. 6, 192–195 (2010)

    Article  Google Scholar 

  46. Schindler, J., Lin, Z., Lee, J.M., Ramezani, H., Ellis, F.M., Kottos, T.: \(\mathbb {PT}\)-symmetric electronics. J. Phys. A Math. Theor. 45, 444029 (15pp) (2012)

    Google Scholar 

  47. Skryabin, D.V.: Instabilities of vortices in a binary mixture of trapped Bose-Einstein condensates: Role of collective excitations with positive and negative energies. Phys. Rev. A 63, 013602 (10pp) (2000)

    Google Scholar 

  48. Stanislavova, M., Stefanov, A.: On the stability of standing waves for \(\mathbb {PT}\) symmetric Schrödinger and Klein-Gordon equations in higher space dimensions. Proc. AMS 145, 5273–5285 (2017)

    Google Scholar 

  49. Stringari, S.: Collective excitations of a trapped Bose-condensed gas. Phys. Rev. Lett. 77, 2360–2363 (1996)

    Article  ADS  Google Scholar 

  50. Suchkov, S.V., Sukhorukov, A.A., Huang, J., Dmitriev, S.V., Lee, C., Kivshar, Yu.S.: Nonlinear switching and solitons in PT-symmetric photonic systems. Laser Photonics Rev. 10, 177–213 (2016)

    Article  ADS  Google Scholar 

  51. Weierstrass, K.: Mathematische Werke, vol. 1. Johnson Reprint, New York (1967)

    Google Scholar 

  52. Wimmer, M., Regensburger, A., Miri, M.-A., Bersch, C., Christodoulides, D.N., Peschel, U.: Observation of optical solitons in PT-symmetric lattices. Nature Commun. 6, 7782 (9pp) (2015)

    Google Scholar 

  53. Yang, J.: Partially \(\mathbb {PT}\) symmetric optical potentials with all-real spectra and soliton families in multidimensions. Opt. Lett. 39, 1133–1136 (2014)

    Article  ADS  Google Scholar 

  54. Zezyulin, D.A., Alfimov, G.L., Konotop, V.V., Pérez-García, V.M.: Stability of excited states of a Bose-Einstein condensate in an anharmonic trap. Phys. Rev. A 78, 013606 (12pp) (2008)

    Google Scholar 

  55. Zezyulin, D.A., Konotop, V.V.: Nonlinear modes in the harmonic \(\mathbb {PT}\)-symmetric potential. Phys. Rev. A 85, 043840 (6pp) (2012)

    Google Scholar 

  56. Zezyulin, D.A., Konotop, V.V.: Small-amplitude nonlinear modes under the combined effect of the parabolic potential, nonlocality and \(\mathbb {PT}\)-symmetry. Symmetry 8, 72 (19pp) (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. E. Pelinovsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chernyavsky, A., Kevrekidis, P.G., Pelinovsky, D.E. (2018). Krein Signature in Hamiltonian and \(\mathbb {PT}\)-Symmetric Systems. In: Christodoulides, D., Yang, J. (eds) Parity-time Symmetry and Its Applications. Springer Tracts in Modern Physics, vol 280. Springer, Singapore. https://doi.org/10.1007/978-981-13-1247-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1247-2_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1246-5

  • Online ISBN: 978-981-13-1247-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics