Skip to main content

Non-Hermitian Optical Waveguide Couplers

  • Chapter
  • First Online:
Parity-time Symmetry and Its Applications

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 280))

  • 2673 Accesses

Abstract

We discuss the PT symmetry effects in non-Hermitian waveguiding geometries starting from a classical example of a two-core coupler with gain and loss. We demonstrate that a nonlinear response can break the PT symmetry in a coupler, and discuss the regimes of parametric amplification and nonlocality associated with such systems. Then, we analyse non-Hermitical trimers and also a PT-symmetric system embedded into an array of waveguides. Finally, we demonstrate the existence of nontrivial modes in non-Hermitian waveguiding structures with asymmetric layers of gain and loss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bender, C.M., Boettcher, S.: Real spectra in non-Hermitian hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  2. El Ganainy, R., Makris, K.G., Christodoulides, D.N., Musslimani, Z.H.: Theory of coupled optical PT-symmetric structures. Opt. Lett. 32, 2632–2634 (2007)

    Article  ADS  Google Scholar 

  3. Makris, K.G., El Ganainy, R., Christodoulides, D.N., Musslimani, Z.H.: Beam dynamics in PT symmetric optical lattices. Phys. Rev. Lett. 100, 103904–4 (2008)

    Article  ADS  Google Scholar 

  4. Ruter, C.E., Makris, K.G., El Ganainy, R., Christodoulides, D.N., Segev, M., Kip, D.: Observation of parity-time symmetry in optics. Nat. Phys. 6, 192–195 (2010)

    Article  Google Scholar 

  5. Feng, L., Wong, Z.J., Ma, R.M., Wang, Y., Zhang, X.: Single-mode laser by parity-time symmetry breaking. Science 346, 972–975 (2014)

    Article  ADS  Google Scholar 

  6. Hodaei, H., Miri, M.A., Heinrich, M., Christodoulides, D.N., Khajavikhan, M.: Parity-time-symmetric microring lasers. Science 346, 975–978 (2014)

    Article  ADS  Google Scholar 

  7. Kato, T.: Perturbation Theory for Linear Operators, 2nd edn. Springer, Berlin (1995)

    Book  Google Scholar 

  8. Klaiman, S., Guenther, U., Moiseyev, N.: Visualization of branch points in PT-symmetric waveguides. Phys. Rev. Lett. 101, 080402–4 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  9. Heiss, W.D.: Exceptional points of non-hermitian operators. J. Phys. A 37, 2455–2464 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  10. Muller, M., Rotter, I.: Exceptional points in open quantum systems. J. Phys. A 41, 244018–15 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  11. Mostafazadeh, A.: Self-dual spectral singularities and coherent perfect absorbing lasers without PT-symmetry. J. Phys. A 45, 444024–10 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  12. Mostafazadeh, A.: Pseudo-hermiticity versus PT symmetry: the necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian. J. Math. Phys. 43, 205–214 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  13. Chen, Y.J., Snyder, A.W., Payne, D.N.: Twin core nonlinear couplers with gain and loss. IEEE J. Quantum Electron. 28, 239–245 (1992)

    Article  ADS  Google Scholar 

  14. Malomed, B.A., Peng, G.D., Chu, P.L.: Nonlinear-optical amplifier based on a dual-core fiber. Opt. Lett. 21, 330–332 (1996)

    Article  ADS  Google Scholar 

  15. Ramezani, H., Kottos, T., El Ganainy, R., Christodoulides, D.N.: Unidirectional nonlinear PT-symmetric optical structures. Phys. Rev. A 82, 043803–6 (2010)

    Article  ADS  Google Scholar 

  16. Sukhorukov, A.A., Xu, Z.Y., Kivshar, Y.S.: Nonlinear suppression of time reversals in PT-symmetric optical couplers. Phys. Rev. A 82, 043818–5 (2010)

    Article  ADS  Google Scholar 

  17. Kevrekidis, P.G., Pelinovsky, D.E., Tyugin, D.Y.: Nonlinear dynamics in PT-symmetric lattices. J. Phys. A 46, 365201–17 (2013)

    Article  MathSciNet  Google Scholar 

  18. Barashenkov, I.V.: Hamiltonian formulation of the standard PT-symmetric nonlinear Schrödinger dimer. Phys. Rev. A 90, 045802–4 (2014)

    Article  ADS  Google Scholar 

  19. Barashenkov, I.V., Jackson, G.S., Flach, S.: Blow-up regimes in the PT-symmetric coupler and the actively coupled dimer. Phys. Rev. A 88, 053817–8 (2013)

    Article  ADS  Google Scholar 

  20. Pickton, J., Susanto, H.: Integrability of PT-symmetric dimers. Phys. Rev. A 88, 063840–8 (2013)

    Article  ADS  Google Scholar 

  21. Barashenkov, I.V., Pelinovsky, D.E., Dubard, P.: Dimer with gain and loss: integrability and PT-symmetry restoration. J. Phys. A 48, 325201–28 (2015)

    Article  MathSciNet  Google Scholar 

  22. Lupu, A., Benisty, H., Degiron, A.: Using optical PT-symmetry for switching applications. Photonics Nanostruct. Fundam. Appl. 12, 305–311 (2014)

    Article  ADS  Google Scholar 

  23. Schindler, J., Li, A., Zheng, M.C., Ellis, F.M., Kottos, T.: Experimental study of active LRC circuits with PT symmetries. Phys. Rev. A 84, 040101–5 (2011)

    Article  ADS  Google Scholar 

  24. Cuevas, J., Kevrekidis, P.G., Saxena, A., Khare, A.: PT-symmetric dimer of coupled nonlinear oscillators. Phys. Rev. A 88, 032108–11 (2013)

    Article  ADS  Google Scholar 

  25. Duanmu, M., Li, K., Horne, R.L., Kevrekidis, P.G., Whitaker, N.: Linear and nonlinear parity-time-symmetric oligomers: a dynamical systems analysis. Philos. Trans. R. Soc. A 371, 20120171–19 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  26. Miroshnichenko, A.E., Malomed, B.A., Kivshar, Y.S.: Nonlinearly PT-symmetric systems: spontaneous symmetry breaking and transmission resonances. Phys. Rev. A 84, 012123–4 (2011)

    Article  ADS  Google Scholar 

  27. Zezyulin, D.A., Kartashov, Y.V., Konotop, V.V.: Stability of solitons in PT-symmetric nonlinear potentials. Europhys. Lett. 96, 64003–6 (2011)

    Article  ADS  Google Scholar 

  28. Longhi, S.: Phase transitions in wick-rotated PT-symmetric optics. Ann. Phys. 360, 150–160 (2015)

    Article  Google Scholar 

  29. Moreira, F.C., Abdullaev, F.K., Konotop, V.V., Yulin, A.V.: Localized modes in χ (2) media with PT-symmetric localized potential. Phys. Rev. A 86, 053815–7 (2012)

    Article  ADS  Google Scholar 

  30. Li, K., Zezyulin, D.A., Kevrekidis, P.G., Konotop, V.V., Abdullaev, F.K.: PT-symmetric coupler with χ (2) nonlinearity. Phys. Rev. A 88, 053820–11 (2013)

    Article  ADS  Google Scholar 

  31. Abdullaev, F.K., Umarov, B.A.: Exact solitonic solutions for optical media with χ (2) nonlinearity and PT-symmetric potentials. J. Phys. Conf. Ser. 553, 012001–6 (2014)

    Article  Google Scholar 

  32. Boyd, R.W.: Nonlinear Optics, 3rd edn. Academic, San Diego (2008)

    Google Scholar 

  33. Antonosyan, D.A., Solntsev, A.S., Sukhorukov, A.A.: Parity-time anti-symmetric parametric amplifier. Opt. Lett. 40, 4575–4578 (2015)

    Article  ADS  Google Scholar 

  34. Jones, H.F.: Scattering from localized non-hermitian potentials. Phys. Rev. D 76, 125003–5 (2007)

    Article  ADS  Google Scholar 

  35. Znojil, M.: Scattering theory using smeared non-Hermitian potentials. Phys. Rev. D 80, 045009–12 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  36. Dmitriev, S.V., Sukhorukov, A.A., Kivshar, Y.S.: Binary parity-time-symmetric nonlinear lattices with balanced gain and loss. Opt. Lett. 35, 2976–2978 (2010)

    Article  ADS  Google Scholar 

  37. Zheng, M.C., Christodoulides, D.N., Fleischmann, R., Kottos, T.: PT optical lattices and universality in beam dynamics. Phys. Rev. A 82, 010103–4 (2010)

    Article  ADS  Google Scholar 

  38. Sukhorukov, A.A., Dmitriev, S.V., Suchkov, S.V., Kivshar, Y.S.: Nonlocality in PT-symmetric waveguide arrays with gain and loss. Opt. Lett. 37, 2148–2150 (2012)

    Article  ADS  Google Scholar 

  39. Longhi, S., Cannata, F., Ventura, A.: Spontaneous PT symmetry breaking in dirac-kronig-penney crystals. Phys. Rev. B 84, 235131–8 (2011)

    Article  ADS  Google Scholar 

  40. Moiseyev, N.: Crossing rule for a PT-symmetric two-level time-periodic system. Phys. Rev. A 83, 052125–5 (2011)

    Article  ADS  Google Scholar 

  41. Joglekar, Y.N., Marathe, R., Durganandini, P., Pathak, R.K.: PT spectroscopy of the Rabi problem. Phys. Rev. A 90, 040101–4 (2014)

    Article  ADS  Google Scholar 

  42. Gong, J.B., Wang, Q.H.: Stabilizing non-Hermitian systems by periodic driving. Phys. Rev. A 91, 042135–6 (2015)

    Article  ADS  Google Scholar 

  43. Driben, R., Malomed, B.A.: Stability of solitons in parity-time-symmetric couplers. Opt. Lett. 36, 4323–4325 (2011)

    Article  ADS  Google Scholar 

  44. Driben, R., Malomed, B.A.: Stabilization of solitons in PT models with supersymmetry by periodic management. Europhys. Lett. 96, 51001–5 (2011)

    Article  ADS  Google Scholar 

  45. Horne, R.L., Cuevas, J., Kevrekidis, P.G., Whitaker, N., Abdullaev, F.K., Frantzeskakis, D.J.: PT-symmetry management in oligomer systems. J. Phys. A 46, 485101–19 (2013)

    Article  MathSciNet  Google Scholar 

  46. D’Ambroise, J., Malomed, B.A., Kevrekidis, P.G.: Quasi-energies, parametric resonances, and stability limits in ac-driven PT-symmetric systems. Chaos 24, 023136–10 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  47. Battelli, F., Diblik, J., Feckan, M., Pickton, J., Pospisil, M., Susanto, H.: Dynamics of generalized PT-symmetric dimers with time-periodic gain-loss. Nonlinear Dynam. 81, 353–371 (2015)

    Article  MathSciNet  Google Scholar 

  48. Martinez, A.J., Molina, M.I., Turitsyn, S.K., Kivshar, Y.S.: Nonlinear multicore waveguiding structures with balanced gain and loss. Phys. Rev. A 91, 023822–8 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  49. Liu, J.B., Xie, X.T., Shan, C.J., Liu, T.K., Lee, R.K., Wu, Y.: Optical bistability in nonlinear periodical structures with PT-symmetric potential. Laser Phys. 25, 015102–5 (2015)

    ADS  Google Scholar 

  50. Greenberg, M., Orenstein, M.: Irreversible coupling by use of dissipative optics. Opt. Lett. 29, 451–453 (2004)

    Article  ADS  Google Scholar 

  51. Greenberg, M., Orenstein, M.: Unidirectional complex gratings assisted couplers. Opt. Express 12, 4013–4018 (2004)

    Article  ADS  Google Scholar 

  52. Greenberg, M., Orenstein, M.: Optical unidirectional devices by complex spatial single sideband perturbation. IEEE J. Quantum Electron. 41, 1013–1023 (2005)

    Article  ADS  Google Scholar 

  53. West, B.R., Plant, D.V.: Transfer matrix analysis of the unidirectional grating-assisted codirectional coupler. Appl. Opt. 46, 8052–8060 (2007)

    Article  ADS  Google Scholar 

  54. Luo, X.B., Huang, J.H., Zhong, H.H., Qin, X.Z., Xie, Q.T., Kivshar, Y.S., Lee, C.H.: Pseudo-parity-time symmetry in optical systems. Phys. Rev. Lett. 110, 243902–5 (2013)

    Article  ADS  Google Scholar 

  55. Yuce, C.: Pseudo PT symmetric lattice. Eur. Phys. J. D 69, 11–5 (2015)

    Article  ADS  Google Scholar 

  56. Konotop, V.V., Zezyulin, D.A.: Stochastic parity-time-symmetric coupler. Opt. Lett. 39, 1223–1226 (2014)

    Article  ADS  Google Scholar 

  57. Guo, A., Salamo, G.J., Duchesne, D., Morandotti, R., Volatier-Ravat, M., Aimez, V., Siviloglou, G.A., Christodoulides, D.N.: Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902–4 (2009)

    Article  ADS  Google Scholar 

  58. Suchkov, S.V., Fotsa-Ngaffo, F., Kenfack-Jiotsa, A., Tikeng, A.D., Kofane, T.C., Kivshar, Y.S., Sukhorukov, A.A.: Non-Hermitian trimers: PT-symmetry versus pseudo-Hermiticity. New J. Phys. 18, 065005–9 (2016)

    Article  ADS  Google Scholar 

  59. Lin, Z., Ramezani, H., Eichelkraut, T., Kottos, T., Cao, H., Christodoulides, D.N.: Unidirectional invisibility induced by PT-symmetric periodic structures. Phys. Rev. Lett. 106, 213901–4 (2011)

    Article  ADS  Google Scholar 

  60. Dmitriev, S.V., Suchkov, S.V., Sukhorukov, A.A., Kivshar, Y.S.: Scattering of linear and nonlinear waves in a waveguide array with a PT-symmetric defect. Phys. Rev. A 84, 013833–5 (2011)

    Article  ADS  Google Scholar 

  61. Mostafazadeh, A.: Invisibility and PT symmetry. Phys. Rev. A 87, 012103–8 (2013)

    Article  ADS  Google Scholar 

  62. Feng, L., Xu, Y.L., Fegadolli, W.S., Lu, M.H., Oliveira, J.E.B., Almeida, V.R., Chen, Y.F., Scherer, A.: Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies. Nat. Mater. 12, 108–113 (2013)

    Article  ADS  Google Scholar 

  63. Li, K., Kevrekidis, P.G.: PT-symmetric oligomers: analytical solutions, linear stability, and nonlinear dynamics. Phys. Rev. E 83, 066608–7 (2011)

    Article  ADS  Google Scholar 

  64. Li, K., Kevrekidis, P.G., Frantzeskakis, D.J., Ruter, C.E., Kip, D.: Revisiting the PT-symmetric trimer: bifurcations, ghost states and associated dynamics. J. Phys. A 46, 375304–12 (2013)

    Article  MathSciNet  Google Scholar 

  65. Siegman, A.E.: Propagating modes in gain-guided optical fibers. J. Opt. Soc. Am. A 20, 1617–1628 (2003)

    Article  ADS  Google Scholar 

  66. Dastmalchi, B., Tassin, P., Koschny, T., Soukoulis, C.M.: A new perspective on plasmonics: confinement and propagation length of surface plasmons for different materials and geometries. Adv. Opt. Mater. 4, 177–184 (2016)

    Article  Google Scholar 

  67. Boltasseva, A., Atwater, H.A.: Low-loss plasmonic metamaterials. Science 331, 290–291 (2011)

    Article  ADS  Google Scholar 

  68. Stockman, M.I.: Spaser action, loss compensation, and stability in plasmonic systems with gain. Phys. Rev. Lett. 106, 156802–4 (2011)

    Article  ADS  Google Scholar 

  69. Wuestner, S., Pusch, A., Tsakmakidis, K.L., Hamm, J.M., Hess, O.: Overcoming losses with gain in a negative refractive index metamaterial. Phys. Rev. Lett. 105, 127401–4 (2010)

    Article  ADS  Google Scholar 

  70. Fang, A., Koschny, T., Soukoulis, C.M.: Self-consistent calculations of loss-compensated fishnet metamaterials. Phys. Rev. B 82, 121102–4 (2010)

    Article  ADS  Google Scholar 

  71. Lupu, A., Benisty, H., Degiron, A.: Switching using PT symmetry in plasmonic systems: positive role of the losses. Opt. Express 21, 21651–21668 (2013)

    Article  ADS  Google Scholar 

  72. Alaeian, H., Dionne, J.A.: Non-Hermitian nanophotonic and plasmonic waveguides. Phys. Rev. B 89, 075136–9 (2014)

    Article  ADS  Google Scholar 

  73. Savoia, S., Castaldi, G., Galdi, V.: Non-Hermiticity-induced wave confinement and guiding in loss-gain-loss three-layer systems. Phys. Rev. A 94, 043838–10 (2016)

    Article  ADS  Google Scholar 

  74. Walasik, W., Ma, C.C., Litchinitser, N.M.: Dissimilar directional couplers showing PT-symmetric-like behavior. New J. Phys. 19, 075002–8 (2017)

    Article  ADS  Google Scholar 

  75. Turitsyna, E.G., Shadrivov, I.V., Kivshar, Y.S.: Guided modes in non-Hermitian optical waveguides. Phys. Rev. A 96, 033824–4 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support by the Australian Research Council (ARC), including Discovery Project DP160100619.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Suchkov, S.V., Sukhorukov, A.A., Kivshar, Y.S. (2018). Non-Hermitian Optical Waveguide Couplers. In: Christodoulides, D., Yang, J. (eds) Parity-time Symmetry and Its Applications. Springer Tracts in Modern Physics, vol 280. Springer, Singapore. https://doi.org/10.1007/978-981-13-1247-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1247-2_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1246-5

  • Online ISBN: 978-981-13-1247-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics