Skip to main content

Investigating Freezing Patterns in Plants Using Infrared Thermography

  • Chapter
  • First Online:
Survival Strategies in Extreme Cold and Desiccation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1081))

Abstract

Since the discovery of infrared radiation in 1800, the improvement of technology to detect and image infrared (IR) has led to numerous breakthroughs in several scientific fields of study. The principle that heat is released when water freezes and the ability to image this release of heat using IR thermography (IRT) has allowed an unprecedented understanding of freezing in plants. Since the first published report of the use of IRT to study freezing in plants, numerous informative discoveries have been reported. Examples include barriers to freezing, specific sites of ice nucleation, direction and speed of ice propagation, specific structures that supercool, and temperatures at which they finally freeze. These and other observations underscore the significance of this important technology on plant research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

IRT:

Infrared thermography

MRI:

Magnetic resonance imaging

NMR:

Nuclear magnetic resonance

References

  • Aloni R, Griffith M (1991) Functional xylem anatomy in root-shoot junctions of six cereal species. Planta 184:123–129

    Article  CAS  Google Scholar 

  • Ball MC, Wolfe J, Canny M, Hofmann M, Nicotra AB, Hughes D (2002) Space and time dependence of temperature and freezing in evergreen leaves. Funct Plant Biol 29:1259–1272

    Article  Google Scholar 

  • Brouwer DJ, Duke SH, Osborn TC (2000) Mapping genetic factors associated with winter hardiness, fall growth, and freezing injury in autotetraploid alfalfa. Crop Sci 40:1387–1396

    Article  CAS  Google Scholar 

  • Cai Q, Guy CL, Moore GA (1994) Extension of the linkage map in Citrus using random amplified polymorphic DNA (RAPD) and RFLP mapping of cold-acclimation-responsive loci. Theor Appl Genet 89:606–614

    Article  CAS  Google Scholar 

  • Ceccardi TL, Heath RL, Ting IP (1995) Low-temperature exotherm measurement using infrared thermography. Hortscience 30:140–142

    Google Scholar 

  • Corsi C (2010) History highlights and further trends of infrared sensors. J Mod Opt 57:1663–1686

    Article  CAS  Google Scholar 

  • Fuller MP, Wisniewski M (1998) The use of infrared thermal imaging in the study of ice nucleation and freezing of plants. J Therm Biol 23:81–89

    Article  Google Scholar 

  • Fuller MP, Fuller AM, Kaniouras S, Christophers J, Fredericks T (2007) The freezing characteristics of wheat at ear emergence. Eur J Agron 26:435–441

    Article  Google Scholar 

  • Fuller MP, Christopher J, Fredericks T (2009) Low temperature damage to wheat in head: matching perceptions to reality. In: Gusta LV, Wisniewski ME, Tanino KK (eds) Plant cold hardiness: from the laboratory to the field. CABI International, Cambridge, pp 12–18

    Chapter  Google Scholar 

  • Gaussorgues G (1994) Infrared thermography (trans Chomet S), Chapman and Hall, London

    Book  Google Scholar 

  • Gusta LV, Fowler DB, Chen P, Russel DB, Stout DG (1979) A nuclear magnetic resonance study of water in cold acclimating cereals. Plant Physiol 63:627–634

    Article  CAS  Google Scholar 

  • Gusta LV, Wisniewski M, Nesbitt NT, Gusta ML (2004) The effect of water, sugars and protein on the pattern of ice nucleation and propagation in the acclimated and nonacclimated canola leaves. Plant Physiol 135:1642–1653

    Article  CAS  Google Scholar 

  • Hacker J, Neuner G (2007) Ice propagation in plants visualized at the tissue level by infrared differential thermal analysis (IDTA). Tree Physiol 27:1661–1670

    Article  Google Scholar 

  • Hacker J, Ladinig U, Wagner J, Neuner G (2011) Inflorescences of alpine cushion plants freeze autonomously and may survive subzero temperatures by supercooling. Plant Sci 180:149–156

    Article  CAS  Google Scholar 

  • Hayes PM, Blake T, Chen THH, Tragoonrung S, Chen F, Pan A, Liu B (1993) Quantitative trait loci on barley (Hordeum vulgare L.) chromosome 7 associated with components of winterhardiness. Genome 36:66–71

    Article  CAS  Google Scholar 

  • Herman EM, Rotter K, Premakumar R, Elwinger G, Bae R, Ehler-King L, Chen S, Livingston DPIII (2006) Additional freeze hardiness in wheat acquired by exposure to −3 °C is correlated with changes in physiology, structure, transcriptome and proteome. J Exp Bot 57:3601–3618

    Article  CAS  Google Scholar 

  • Honjoh K, Shimizu H, Nagaishi N, Matsimoto H, Suga K, Miyamoto T, Iio M, Hatano S (2001) Improvement of freezing tolerance in transgenic tobacco leaves by expressing the hiC6 gene. Biosci Biotechnol Biochem 65:1796–1804

    Article  CAS  Google Scholar 

  • Ishikawa M, Ide H, Yamazaki H, Murakawa H, Kuchitsu K, Price WS, Arata Y (2016) Freezing behaviours in wintering Cornus florida flower bud tissues revisited using MRI. Plant Cell Environ 39:2663–2675

    Article  CAS  Google Scholar 

  • Kaku S, Salt RW (1968) Relation between freezing temperature and length of conifer needles. Can J Bot 46:1211–1213

    Article  Google Scholar 

  • Kuprian E, Tuong T, Pfaller K, Livingston DPIII, Neuner G (2016) Persistent supercooling of reproductive shoots is enabled by structural ice barriers being active despite an intact xylem connection. PLoS One 11:e0163160

    Article  Google Scholar 

  • Lahiri BB, Bagavathiappan S, Jayakumar T, Philip J (2012) Medical applications of infrared thermography. Infrared Phys Technol 55:221–235

    Article  Google Scholar 

  • Lee RE, Warren GJ, Gusta LV (eds) (1995) Biological ice nucleation and its application. The American Phytopathological Society, St Paul

    Google Scholar 

  • Livingston DPIII (2007) Quantifying liquid water in frozen plant tissues by isothermal calorimetry. Thermochim Acta 459:116–120

    Article  CAS  Google Scholar 

  • Livingston DP III, Elwinger GF, Murphy JP (2004) Moving beyond the winter hardiness plateau in US oat germplasm. Crop Sci 44:1966–1969

    Article  Google Scholar 

  • Livingston DPIII, Tallury SP, Premakumar R, Owens S, Olien CR (2005) Changes in the histology of cold hardened oat crowns during recovery from freezing. Crop Sci 45:1545–1558

    Article  Google Scholar 

  • Livingston DPIII, Tuong TD, Isleib T, Murphy JP (2016) Differences between wheat genotypes in damage from freezing temperatures during reproductive growth. Eur J Agron 74:164–172

    Article  Google Scholar 

  • Millard MM, Veisz OB, Kriezek DT, Line M (1995) Magnetic resonance imaging (MRI) of water during cold acclimation and freezing in winter wheat. Plant Cell Environ 18:535–544

    Article  Google Scholar 

  • Olien CR (1967) Freezing stresses and survival. Annu Rev Plant Physiol 18:387–408

    Article  Google Scholar 

  • Olien CR, Marchetti BL (1976) Recovery of hardened barley from winter injuries. Crop Sci 16:201–204

    Article  Google Scholar 

  • Pearce RS, Fuller MP (2001) Freezing of barley studied by infrared video thermography. Plant Physiol 125:227–240

    Article  CAS  Google Scholar 

  • Reinheimer JL, Barr AR, Eglinton JK (2004) QTL mapping of chromosomal regions conferring reproductive frost tolerance in barley (Hordeum vulgare L). Theor Appl Genet 109:1267–1274

    Article  CAS  Google Scholar 

  • Richards PL (1994) Bolometers for infrared and millimeter waves. J Appl Phys 76:1–24

    Article  CAS  Google Scholar 

  • Rogalski A (2010) Recent progress in third generation infrared detectors. J Mod Opt 57:1716–1730

    Article  CAS  Google Scholar 

  • Shou H, Bordalla P, Fan JB, Yeakley JM, Bibikova M, Sheen J, Wang K (2004) Expression of an active tobacco mitogen-activated protein kinase enhances freezing tolerance in transgenic maize. Proc Natl Acad Sci U S A 101:3298–3303

    Article  CAS  Google Scholar 

  • Single W, Marcellos H (1981) Ice formation and freezing injury in actively growing cereals. In: Olien C, Smith M (eds) Analysis and improvement of plant cold hardiness. CRC Press, Boca Raton, pp 17–33

    Google Scholar 

  • Stier JC, Filiaut DL, Wisniewski M, Paulta JP (2003) Visualization of freezing progression in turfgrass using infrared video thermography. Crop Sci 43:415–420

    Article  Google Scholar 

  • Tanino KK, McKersie BD (1985) Injury within the crown of winter wheat seedlings after freezing and icing stress. Can J Bot 63:432–435

    Article  Google Scholar 

  • Thomashow MF (1999) Plant cold-acclimation: freezing tolerance, genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  CAS  Google Scholar 

  • Usamentiaga R, Venegas P, Guerediaga J, Vega L, Molleda J, Bulnes FG (2014) Infrared thermography for temperature measurement and non-destructive testing. Sensors 14:12305–12348

    Article  Google Scholar 

  • Wimmer B (2011) History of thermal imaging, Security Sales and Integration. A division of EH publishing, Framingham

    Google Scholar 

  • Wisniewski M, Lindow SE, Ashworth E (1997) Observations of ice nucleation and propagation in plants using infrared video thermography. Plant Physiol 113:327–334

    Article  CAS  Google Scholar 

  • Wisniewski M, Glenn DM, Gusta L, Fuller M (2008) Using infrared thermography to study freezing in plants. Hortscience 43:1648–1651

    Google Scholar 

  • Wisniewski M, Gusta G, Neuner G (2014) Adaptive mechanisms of freeze avoidance in plants: a brief update. Environ Exp Bot 99:133–140

    Article  CAS  Google Scholar 

  • Wooten DR, Livingston DPIII, Holland DB, Marshall DS, Murphy JP (2008) Quantitative trait loci and epistasis for crown freeze tolerance in the Kanota × Ogle hexaploid oat mapping population. Crop Sci 48:149–157

    Article  Google Scholar 

  • Zamecnik J, Bieblova J, Grospietsch M (1994) Safety zone as a barrier to root-shoot ice propagation. Plant Soil 167:149–155

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David P. Livingston III .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Livingston, D.P. (2018). Investigating Freezing Patterns in Plants Using Infrared Thermography. In: Iwaya-Inoue, M., Sakurai, M., Uemura, M. (eds) Survival Strategies in Extreme Cold and Desiccation. Advances in Experimental Medicine and Biology, vol 1081. Springer, Singapore. https://doi.org/10.1007/978-981-13-1244-1_7

Download citation

Publish with us

Policies and ethics