Skip to main content

Supercooling-Promoting (Anti-ice Nucleation) Substances

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1081))

Abstract

Studies on supercooling-promoting substances (SCPSs) are reviewed introducing name of chemicals, experimental conditions and the supercooling capability (SCC) in all, so far recognized, reported SCPSs and results of our original study are presented in order to totally show the functional properties of SCPSs which are known in the present state. Many kinds of substances have been identified as SCPSs that promote supercooling of aqueous solutions in a non-colligative manner by reducing the ice nucleation capability (INC) of ice nucleators (INs). The SCC as revealed by reduction of freezing temperature (°C) by SCPSs differs greatly depending on the INs. While no single SCPS that affects homogeneous ice nucleation to reduce ice nucleation point has been found, many SCPSs have been found to reduce freezing temperatures by heterogeneous ice nucleation with a large fluctuation of SCC depending on the kind of heterogeneous IN. Not only SCPSs increase the degree of SCC (°C), but also some SCPSs have additional SCC to stabilize a supercooling state for a long term to stabilize supercooling against strong mechanical disturbance and to reduce sublimation of ice crystals. The mechanisms underlying the diverse functions of SCPSs remain to be determined in future studies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AFGP:

Antifreeze glycoprotein protein

AFP:

Antifreeze protein

BMQW:

Buffered MQ-water

FT50 :

Temperature at which 50% of the water sample is frozen

IN:

Ice nucleator

INB:

Ice nucleation bacteria

INC:

Ice nucleation capability

MQ-W:

Ultrapure water

SCC:

Supercooling capability

SCPS:

Supercooling-promoting substance

References

  • Badrzadeh H, Najmabadi S, Paymani R, Macaso T, Azadbadi Z, Ahmady A (2010) Super cool X-1000 and super cool Z-1000, two ice blockers, and their effect on vitrification/warming of mouse embryos. Eur J Obstet Gynecol Reprod Biol 151:70–71

    Article  CAS  Google Scholar 

  • Baust JG, Zachariassen KE (1983) Seasonally active cell matrix associated ice nucleators in an insect. CryoLetters 4:65–71

    Google Scholar 

  • Berendsen TA, Bruinsma BG, Puts CF, Saeidi N, Usta OB, Uygun BE, Izamis M-L, Toner M, Yarmush ML, Uygun K (2014) Supercooling enables long-term transplantation survival following 4 days of liver preservation. Nat Med 20:790–794

    Article  CAS  Google Scholar 

  • Caple G, Allegretto E, Culbertson LB, Layton RG (1983a) Polymeric inhibition of ice nuclei active sites. CryoLetters 4:51–58

    CAS  Google Scholar 

  • Caple G, Layton RG, McCurdy SN, Dunn C, Culbertson L (1983b) Biogenic effects in heterogeneous ice nucleation. CryoLetters 4:59–64

    Google Scholar 

  • Corn M, Peterec S, Mock H-P, Heyer AG, Hincha DK (2008) Heterosis in the freezing tolerance, and sugar and flavonoid contents of crosses between Arabidopsis thaliana accessions of widely varying freezing tolerance. Plant Cell Environ 31:813–827

    Article  Google Scholar 

  • Devries AL, Wohlschlag DE (1969) Freezing resistance in some Antarctic fishes. Science 163:1074–1075

    Article  Google Scholar 

  • Duman JG (2002) The inhibition of ice nucleators by insect antifreeze proteins is enhanced by glycerol and citrate. J Comp Physiol B 172:163–168

    Article  CAS  Google Scholar 

  • Franks F, Darlington J, Schenz T, Mathias SF, Slade L, Levine H (1987) Antifreeze activity of Antarctic fish glycoprotein and a synthetic polymer. Nature 325:146–147

    Article  CAS  Google Scholar 

  • Fujikawa S (2016) In: eLS (ed) Plant responses to freezing. Wiley, Chichester. https://doi.org/10.1002/9780470015902.a0023719

    Chapter  Google Scholar 

  • Fujikawa S, Kasuga J, Takata N, Arakawa K (2009) Factors related to change of deep supercooling capability in xylem parenchyma cells of trees. In: Gusta LV, Wisniewski ME, Tanino K (eds) Plant cold hardiness. From the laboratory to the field. CABI, Wallingford, pp 29–42

    Chapter  Google Scholar 

  • Heneghan AF, Haymet ADJ (2002) Liquid-to-crystal heterogeneous nucleation: bubble accelerated nucleation of pure supercooled water. Chem Phys Lett 368:177–182

    Article  Google Scholar 

  • Holt CB (2003a) Substances which inhibit ice nucleation: a review. CryoLetters 24:269–274

    CAS  PubMed  Google Scholar 

  • Holt CB (2003b) The effect of antifreeze proteins and poly (vinyl alcohol) on the nucleation of ice: a preliminary study. CryoLetters 24:323–330

    CAS  PubMed  Google Scholar 

  • Inada T, Zang X, Yabe A, Kozawa Y (2001) Active control of phase change from supercooled water to ice by ultrasonic vibration 1: control of freezing temperature. Int J Heat Mass Tran 44:4523–4531

    Article  CAS  Google Scholar 

  • Inada T, Koyama T, Goto F, Seto T (2012) Inactivation of ice nucleating activity of silver iodide by antifreeze proteins and synthetic polymers. J Phys Chem B 116:5364–5371

    Article  CAS  Google Scholar 

  • Inada T, Koyama T, Tomita H, Fuse T, Kuwabara C, Arakawa K, Fujikawa S (2017) Anti-ice nucleating activity of surfactants against silver iodide in water-in-oil emulsions. J Phys Chem B 121:6580–6587

    Article  CAS  Google Scholar 

  • Kami D, Kasuga J, Arakawa K, Fujikawa S (2008) Improved cryopreservation by diluted vitrification solution with supercooling-facilitating flavonol glycoside. Cryobiology 57:242–245

    Article  CAS  Google Scholar 

  • Kasuga J, Mizuno K, Arakawa K, Fujikawa S (2007) Anti-ice nucleation activity in xylem extracts from trees that contain deep supercooling xylem parenchyma cells. Ctyobiology 55:305–314

    Article  Google Scholar 

  • Kasuga J, Hashidoko Y, Nishioka A, Yoshiba M, Arakawa K, Fujikawa S (2008) Deep supercooling xylem parenchyma cells of katsura tree (Cercidiphyllum japonicum) contain flavonol glycosides exhibiting high anti-ice nucleation activity. Plant Cell Environ 31:1335–1348

    Article  CAS  Google Scholar 

  • Kawahara H, Obata H (1996) Identification of a compound in species inhibiting the ice-nucleating activity of Erwinia uredovora KUIN-3. J Antibact Antifung Agents 24:95–100

    CAS  Google Scholar 

  • Kawahara H, Nagae I, Obata H (1996) Purification and characterization of a new anti-nucleating protein isolated from Acinetobacter calcoaceticus KINI-1. Biocontrol Sci 1:11–17

    Article  CAS  Google Scholar 

  • Kawahara H, Masuda K, Obata H (2000) Identification of a compound in Chamaecyparis taiwanensis inhibiting the ice-nucleating activity of Pseudomonas fluorescens KUIN-1. Biosci Biotechnol Biochem 64:2651–2656

    Article  CAS  Google Scholar 

  • Kiprianova EA, Bakhanova RA, Smirnov VV, Maksimov VS, Boiko OI, Tovstenko LM (1995) Ice-nucleation properties of various bacterial species. Appl Biochem Microbiol 31:439–442

    Google Scholar 

  • Klotz IM (1970) Polyhedral clathrate hydrates. In: Wolstenholme GEW, O’Connor M (eds) The frozen cells. Churchill, London, pp 5–26

    Google Scholar 

  • Kobashigawa Y, Nishimiya Y, Miura K, Ohgiya S, Miura A, Tsuda S (2005) A part of ice nucleation protein exhibits the ice binding ability. FEBS Lett 579:1493–1497

    Article  CAS  Google Scholar 

  • Koyama T, Inada T, Kuwabara C, Arakawa K, Fujikawa S (2014) Anti-ice nucleating activity of polyphenol compounds against silver iodide. Cryobiology 69:223–228

    Article  CAS  Google Scholar 

  • Kuwabara C, Kasuga J, Wang D, Fukushi Y, Arakawa K, Fujikawa S (2011) Change of supercooling capability in solutions containing different kinds of ice nucleators by flavonol glycosides from deep supercooling xylem parenchyma cells in tree. Cryobiology 63:157–163

    Article  CAS  Google Scholar 

  • Kuwabara C, Wang D, Kasuga J, Fukushi Y, Arakawa K, Koyama T, Inada T, Fujikawa S (2012) Freezing activities of flavonoids in solutions containing different ice nucleators. Cryobiology 64:279–285

    Article  CAS  Google Scholar 

  • Kuwabara C, Wang D, Endoh K, Fukushi Y, Arakawa K, Fujikawa S (2013) Analysis of supercooling activity of tannin-related polyphenols. Cryobiology 67:40–49

    Article  CAS  Google Scholar 

  • Kuwabara C, Terauchi R, Tochigi H, Takaoka H, Arakawa K, Fujikawa S (2014) Analysis of supercooling activities of surfactants. Cryobiology 69:10–16

    Article  Google Scholar 

  • Layton RG, Caple G, McCurdy SN (1980) Ice nucleation and antifreeze activity due to biological materials. J Rech Atmos 14:275–280

    Google Scholar 

  • Li N, Andorfer CA, Duman GJ (1998) Enhancement of insect antifreeze protein activity by solutes of low molecular mass. J Exp Biol 201:2243–2251

    CAS  PubMed  Google Scholar 

  • Olsen TM, Duman GJ (1997) Maintenance of the supercooled state in the gut of over-wintering Pyrochroid beetle larvae, Dendroides Canadensis: role of gut ice nucleators and antifreeze proteins. J Comp Physiol B 167:114–122

    Article  Google Scholar 

  • Parody-Morreale A, Mulphy KP, Di Cera E, Fall R, DeVries AL, Gill SJ (1988) Inhibition of bacterial ice nucleators by fish antifreeze glycoproteins. Nature 333:782–783

    Article  CAS  Google Scholar 

  • Sakurai M (2012) The functional mechanism of trehalose as a stress protectant from a viewpoint of its hydration property. Cryobiol Cryotech 58:41–51

    Google Scholar 

  • Shimada S, Motomura N, Kinoshita O, Saito A, Kasuga J, Matsusaka, Kawabata J, Kuwabara C, Fujikawa S, Ono M (2010) Successful introduction of novel supercoolant, kaempferol-7-0-beta-D-glucopyranoside (KF7G) to sub-zero non-freezing rat heart preservation. Low Temp Med 36:20–24

    Google Scholar 

  • Timasheff SN (1992) A physicochemical basis for the selection of osmolytes by nature. In: Somero GN, Osmond CB, Bolis CL (eds) Water and life: comparative analysis of water relationships at the organismic, cellular and molecular level. Springer, Berlin, pp 70–84

    Chapter  Google Scholar 

  • Vali G (1995) Principles of ice nucleation. Lee Jr RE, Warren GJ Biological ice nucleation and its applications, APS Press, St Paul, 1–28

    Google Scholar 

  • Wang D, Kasuga J, Kuwabara C, Endoh K, Fukushi Y, Fujikawa S, Arakawa K (2012) Presence of supercooling-facilitating (anti-ice nucleation) hydrolysable tannins in deep supercooling xylem parenchyma cells in Cercidiphyllum japonicum. Planta 235:747–759

    Article  CAS  Google Scholar 

  • Wharton DA, Worland MR (1998) Ice nucleation activity in the freeze-tolerant Antarctic nematode Panagrolaimus davidi. Cryobiology 36:279–286

    Article  Google Scholar 

  • Wilson PW, Leader JP (1995) Stabilization of supercooled fluids by thermal hysteresis proteins. Biophys J 68:2098–2107

    Article  CAS  Google Scholar 

  • Wilson PW, Heneghan AF, Haymet ADJ (2003) Ice nucleation in nature: supercooling point (SCP) measurements and the role of heterogeneous nucleation. Cryobiology 46:88–98

    Article  CAS  Google Scholar 

  • Wilson PW, Osterday KE, Heneghan AF, Haymet ADJ (2010) Type I antifreeze proteins enhance ice nucleation above certain concentrations. J Biol Chem 285:34741–34745

    Article  CAS  Google Scholar 

  • Wowk B, Fahy GM (2002) Inhibition of bacterial ice nucleation by polyglycerol polymers. Cryobiology 44:14–23

    Article  CAS  Google Scholar 

  • Wowk B, Leitl E, Rasch CM, Mesbah-Karimi N, Harris SB, Fahy GM (2000) Vitrification enhancement by synthetic ice blocking agents. Cryobiology 40:228–236

    Article  CAS  Google Scholar 

  • Wu DW, Duman GJ (1991) Activation of antifreeze proteins from the beetle Dendroides canadensis. J Comp Physiol 161:279–283

    Article  CAS  Google Scholar 

  • Yamanouchi T, Xiao N, Hanada Y, Kamijima T, Sakashita M, Nishimiya Y, Miura A, Kondo H, Tsuda S (2013) Dependence of freeze-concentration inhibition on antifreeze protein. Low Temp Sci 71:91–96

    Google Scholar 

  • Yamashita H, Kawahara H, Obata H (2002) Identification of a novel anti-ice-nucleating polysaccharide from Bacillus thuringiensis YY529. Biosci Biotech Bioch 66:948–954

    Article  CAS  Google Scholar 

  • Zachariassen KE, Hammel HT (1988) The effects of ice nucleating agents on ice nucleating activity. Cryobiology 25:143–147

    Article  Google Scholar 

  • Zachariassen KE, Kristiansen E (2000) Ice nucleation and antinucleation in nature. Cryobiology 41:257–279

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We appreciate the gift of polyphenol mixtures and crude tannin extracts by Amino Up Chemical Co. Ltd. (Japan), the gift of polyphenol mixtures by Taiyo Kagaku Co. Ltd. (Japan), and gift of AFP III from the Notched-fin eelpout by Dr. S. Tsuda, AIST (Japan). We also appreciate collaboration study with Cosmo Oil Lubricants Co. Ltd. (Japan), Asahi Kasei Chemicals Corporation (Japan), DENSO Corporation (Japan), Ishihara Sangyo Kaisha Ltd. (Japan), and Nisshin Seifun Group Inc. (Japan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seizo Fujikawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fujikawa, S., Kuwabara, C., Kasuga, J., Arakawa, K. (2018). Supercooling-Promoting (Anti-ice Nucleation) Substances. In: Iwaya-Inoue, M., Sakurai, M., Uemura, M. (eds) Survival Strategies in Extreme Cold and Desiccation. Advances in Experimental Medicine and Biology, vol 1081. Springer, Singapore. https://doi.org/10.1007/978-981-13-1244-1_16

Download citation

Publish with us

Policies and ethics