Skip to main content

The Antioxidant System in the Anhydrobiotic Midge as an Essential, Adaptive Mechanism for Desiccation Survival

  • Chapter
  • First Online:
Survival Strategies in Extreme Cold and Desiccation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1081))

Abstract

One of the major damaging factors for living organisms experiencing water insufficiency is oxidative stress. Loss of water causes a dramatic increase in the production of reactive oxygen species (ROS). Thus, the ability for some organisms to survive almost complete desiccation (called anhydrobiosis) is tightly related to the ability to overcome extraordinary oxidative stress. The most complex anhydrobiotic organism known is the larva of the chironomid Polypedilum vanderplanki. Its antioxidant system shows remarkable features, such as an expansion of antioxidant genes, their overexpression, as well as the absence or low expression of enzymes required for the synthesis of ascorbate and glutathione and their antioxidant function. In this chapter, we summarize existing data about the antioxidant system of this insect, which is able to cope with substantial oxidative damage, even in an intracellular environment that is severely disturbed due to water loss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ARIds:

Anhydrobiosis-related gene islands

CCS:

Copper chaperone protein

GPx:

Glutathione peroxidase

Grx-like:

Glutaredoxin-like

MPEC:

2-Methyl-6-p-methoxyphenylethynylimidazopyrazinone

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TRX:

Thioredoxin

TrxR:

Thioredoxin reductase

References

  • Bannai H, Tamada Y, Maruyama O, Nakai K, Miyano S (2002) Extensive feature detection of N-terminal protein sorting signals. Bioinformatics 18:298–305

    Article  CAS  Google Scholar 

  • Benaroudj N, Lee DH, Goldberg AL (2001) Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. J Biol Chem 276:24261–24267

    Article  CAS  Google Scholar 

  • Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Gallo Cassarino T, Bertoni M, Bordoli L et al (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42:W252–W258

    Article  CAS  Google Scholar 

  • Brown NM, Torres AS, Doan PE, O’Halloran TV (2004) Oxygen and the copper chaperone CCS regulate posttranslational activation of Cu, Zn superoxide dismutase. Proc Natl Acad Sci U S A 101:5518–5523

    Article  CAS  Google Scholar 

  • Buitink J, Leprince O (2004) Glass formation in plant anhydrobiotes: survival in the dry state. Cryobiology 48:215–228

    Article  CAS  Google Scholar 

  • Carroll MC, Girouard JB, Ulloa JL, Subramaniam JR, Wong PC, Valentine JS, Culotta VC (2004) Mechanisms for activating Cu- and Zn-containing superoxide dismutase in the absence of the CCS Cu chaperone. Proc Natl Acad Sci U S A 101:5964–5969

    Article  CAS  Google Scholar 

  • Cornette R, Kikawada T (2011) The induction of anhydrobiosis in the sleeping chironomid: current status of our knowledge. IUBMB Life 63:419–429

    Article  CAS  Google Scholar 

  • Cornette R, Kanamori Y, Watanabe M, Nakahara Y, Gusev O, Mitsumasu K, Kadono-Okuda K, Shimomura M, Mita K, Kikawada T et al (2010) Identification of anhydrobiosis-related genes from an expressed sequence tag database in the cryptobiotic midge Polypedilum vanderplanki (Diptera; Chironomidae). J Biol Chem 285:35889–35899

    Article  CAS  Google Scholar 

  • Cornette R, Yamamoto N, Yamamoto M, Kobayashi T, Petrova NA, Gusev O, Shimura S, Kikawada T, Pemba D, Okuda T (2017) A new anhydrobiotic midge from Malawi, Polypedilum pembai sp n. (Diptera: Chironomidae), closely related to the desiccation tolerant midge, Polypedilum vanderplanki Hinton. Syst Entomol 42:814–825

    Article  Google Scholar 

  • Corona M, Robinson GE (2006) Genes of the antioxidant system of the honey bee: annotation and phylogeny. Insect Mol Biol 15:687–701

    Article  CAS  Google Scholar 

  • Cranston PS (2014) A new putatively cryptobiotic midge, Polypedilum ovahimba sp nov (Diptera: Chironomidae), from southern Africa. Aust Entomol 53:373–379

    Article  Google Scholar 

  • Crowe JH (2007) Trehalose as a “chemical chaperone”: fact and fantasy. In: Csermely P, Vígh L (eds) Molecular aspects of the stress response: chaperones, membranes and networks. Springer, New York, pp 143–158

    Chapter  Google Scholar 

  • da Costa Morato Nery D, da Silva CG, Mariani D, Fernandes PN, Pereira MD, Panek AD, Eleutherio EC (2008) The role of trehalose and its transporter in protection against reactive oxygen species. Biochim Biophys Acta 1780:1408–1411

    Article  Google Scholar 

  • Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016

    Article  CAS  Google Scholar 

  • Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18

    Article  CAS  Google Scholar 

  • França MB, Panek AD, Eleutherio EC (2007) Oxidative stress and its effects during dehydration. Comp Biochem Physiol A Mol Integr Physiol 146:621–631

    Article  Google Scholar 

  • Furukawa Y, Torres AS, O'Halloran TV (2004) Oxygen-induced maturation of SOD1: a key role for disulfide formation by the copper chaperone CCS. EMBO J 23:2872–2881

    Article  CAS  Google Scholar 

  • Grubor-Lajsic G, Block W, Jovanovic A, Worland R (1996) Antioxidant enzymes in larvae of the Antarctic fly, Belgica antarctica. CryoLetters 17:39–42

    CAS  Google Scholar 

  • Gusev O, Nakahara Y, Vanyagina V, Malutina L, Cornette R, Sakashita T, Hamada N, Kikawada T, Kobayashi Y, Okuda T (2010) Anhydrobiosis-associated nuclear DNA damage and repair in the sleeping chironomid: linkage with radioresistance. PLoS One 5:e14008

    Article  Google Scholar 

  • Gusev O, Suetsugu Y, Cornette R, Kawashima T, Logacheva MD, Kondrashov AS, Penin AA, Hatanaka R, Kikuta S, Shimura S et al (2014) Comparative genome sequencing reveals genomic signature of extreme desiccation tolerance in the anhydrobiotic midge. Nat Commun 5:4784

    Article  CAS  Google Scholar 

  • Herdeiro RS, Pereira MD, Panek AD, Eleutherio EC (2006) Trehalose protects Saccharomyces cerevisiae from lipid peroxidation during oxidative stress. Biochim Biophys Acta 1760:340–346

    Article  CAS  Google Scholar 

  • Hinton H (1951) A new Chironomid from Africa, the larva of which can be dehydrated without injury. Proc Zool Soc Lond 121:371–380

    Article  Google Scholar 

  • Hinton H (1960) A fly larva that tolerates dehydration and temperatures of −270° to +102° C. Nature 188:336–337

    Article  Google Scholar 

  • Holmgren A, Sengupta R (2010) The use of thiols by ribonucleotide reductase. Free Radic Biol Med 49:1617–1628

    Article  CAS  Google Scholar 

  • Indo HP, Davidson M, Yen HC, Suenaga S, Tomita K, Nishii T, Higuchi M, Koga Y, Ozawa T, Majima HJ (2007) Evidence of ROS generation by mitochondria in cells with impaired electron transport chain and mitochondrial DNA damage. Mitochondrion 7:106–118

    Article  CAS  Google Scholar 

  • Jensen LT, Culotta VC (2005) Activation of CuZn superoxide dismutases from Caenorhabditis elegans does not require the copper chaperone CCS. J Biol Chem 280:41373–41379

    Article  CAS  Google Scholar 

  • Lartigue A, Burlat B, Coutard B, Chaspoul F, Claverie JM, Abergel C (2015) The Megavirus chilensis Cu, Zn-superoxide dismutase: the first viral structure of a typical cellular copper chaperone-independent hyperstable dimeric enzyme. J Virol 89:824–832

    Article  Google Scholar 

  • Leitch JM, Yick PJ, Culotta VC (2009) The right to choose: multiple pathways for activating copper, zinc superoxide dismutase. J Biol Chem 284:24679–24683

    Article  CAS  Google Scholar 

  • Leprince O, Atherton NM, Deltour R, Hendry G (1994) The involvement of respiration in free radical processes during loss of desiccation tolerance in germinating Zea mays L. (an electron paramagnetic resonance study). Plant Physiol 104:1333–1339

    Article  CAS  Google Scholar 

  • Lopez-Martinez G, Elnitsky MA, Benoit JB, Lee RE Jr, Denlinger DL (2008) High resistance to oxidative damage in the Antarctic midge Belgica antarctica, and developmentally linked expression of genes encoding superoxide dismutase, catalase and heat shock proteins. Insect Biochem Mol Biol 38:796–804

    Article  CAS  Google Scholar 

  • Maiorino M, Ursini F, Bosello V, Toppo S, Tosatto SC, Mauri P, Becker K, Roveri A, Bulato C, Benazzi L et al (2007) The thioredoxin specificity of Drosophila GPx: a paradigm for a peroxiredoxin-like mechanism of many glutathione peroxidases. J Mol Biol 365:1033–1046

    Article  CAS  Google Scholar 

  • Meyer Y, Siala W, Bashandy T, Riondet C, Vignols F, Reichheld JP (2008) Glutaredoxins and thioredoxins in plants. Biochim Biophys Acta 1783:589–600

    Article  CAS  Google Scholar 

  • Nair PM, Park SY, Chung JW, Choi J (2013) Transcriptional regulation of glutathione biosynthesis genes, gamma-glutamyl-cysteine ligase and glutathione synthetase in response to cadmium and nonylphenol in Chironomus riparius. Environ Toxicol Pharmacol 36:265–273

    Article  CAS  Google Scholar 

  • Nakahara Y, Imanishi S, Mitsumasu K, Kanamori Y, Iwata K, Watanabe M, Kikawada T, Okuda T (2010) Cells from an anhydrobiotic chironomid survive almost complete desiccation. Cryobiology 60:138–146

    Article  Google Scholar 

  • Nesmelov A, Devatiyarov R, Voronina T, Kondratyeva S, Cherkasov A, Cornette R, Kikawada T, Shagimardanova E (2016) New antioxidant genes from an anhydrobiotic insect: unique structural features in functional motifs of thioredoxins. BioNanoScience 6:568–570

    Article  Google Scholar 

  • Oku K, Watanabe H, Kubota M, Fukuda S, Kurimoto M, Tsujisaka Y, Komori M, Inoue Y, Sakurai M (2003) NMR and quantum chemical study on the OH···π and CH···O interactions between trehalose and unsaturated fatty acids: implication for the mechanism of antioxidant function of trehalose. J Am Chem Soc 125:12739–12748

    Article  CAS  Google Scholar 

  • Patenaude A, Ven Murthy MR, Mirault ME (2004) Mitochondrial thioredoxin system: effects of TrxR2 overexpression on redox balance, cell growth, and apoptosis. J Biol Chem 279:27302–27314

    Article  CAS  Google Scholar 

  • Pereira Ede J, Panek AD, Eleutherio EC (2003) Protection against oxidation during dehydration of yeast. Cell Stress Chaperones 8:120–124

    Article  Google Scholar 

  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    Article  CAS  Google Scholar 

  • Pompella A, Visvikis A, Paolicchi A, De Tata V, Casini AF (2003) The changing faces of glutathione, a cellular protagonist. Biochem Pharmacol 66:1499–1503

    Article  CAS  Google Scholar 

  • Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49:1603–1616

    Article  CAS  Google Scholar 

  • Sakurai M, Furuki T, Akao K, Tanaka D, Nakahara Y, Kikawada T, Watanabe M, Okuda T (2008) Vitrification is essential for anhydrobiosis in an African chironomid, Polypedilum vanderplanki. Proc Natl Acad Sci U S A 105:5093–5098

    Article  CAS  Google Scholar 

  • Scheerer P, Borchert A, Krauss N, Wessner H, Gerth C, Hohne W, Kuhn H (2007) Structural basis for catalytic activity and enzyme polymerization of phospholipid hydroperoxide glutathione peroxidase-4 (GPx4). Biochemistry 46:9041–9049

    Article  CAS  Google Scholar 

  • Sun WQ, Leopold AC (1995) The Maillard reaction and oxidative stress during aging of soybean seeds. Physiol Plant 94:94–104

    Article  CAS  Google Scholar 

  • Uttara B, Singh AV, Zamboni P, Mahajan R (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7:65–74

    Article  CAS  Google Scholar 

  • Watanabe M, Kikawada T, Minagawa N, Yukuhiro F, Okuda T (2002) Mechanism allowing an insect to survive complete dehydration and extreme temperatures. J Exp Biol 205:2799–2802

    CAS  PubMed  Google Scholar 

  • Watanabe M, Kikawada T, Fujita A, Okuda T (2005) Induction of anhydrobiosis in fat body tissue from an insect. J Insect Physiol 51:727–731

    Article  CAS  Google Scholar 

  • Watanabe M, Nakahara Y, Sakashita T, Kikawada T, Fujita A, Hamada N, Horikawa DD, Wada S, Kobayashi Y, Okuda T (2007) Physiological changes leading to anhydrobiosis improve radiation tolerance in Polypedilum vanderplanki larvae. J Insect Physiol 53:573–579

    Article  CAS  Google Scholar 

  • Weisiger RA, Fridovich I (1973) Mitochondrial superoxide dismutase site of synthesis and intramitochondrial localization. J Biol Chem 248:4793–4796

    CAS  PubMed  Google Scholar 

  • Zelko IN, Mariani TJ, Folz RJ (2002) Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med 33:337–349

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We extend our gratitude to the Federal Ministry of Environment of Nigeria for permitting research on P. vanderplanki. The work was performed according to the Russian Government Program of Competitive Growth of Kazan Federal University and was supported by Russian Science Foundation grant for international group 14-44-00022. The work was also supported by JSPS KAKENHI Grant Numbers JP17H01511, JP16K07308, JP15H05622, JP25128714, and JP23128512.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Kikawada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nesmelov, A., Cornette, R., Gusev, O., Kikawada, T. (2018). The Antioxidant System in the Anhydrobiotic Midge as an Essential, Adaptive Mechanism for Desiccation Survival. In: Iwaya-Inoue, M., Sakurai, M., Uemura, M. (eds) Survival Strategies in Extreme Cold and Desiccation. Advances in Experimental Medicine and Biology, vol 1081. Springer, Singapore. https://doi.org/10.1007/978-981-13-1244-1_14

Download citation

Publish with us

Policies and ethics