Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 304 Accesses

Abstract

This chapter introduces the experimental techniques employed for assembly of nanodisc and functional studies of bacteriorhodopsin. The assembled nanodisc was purified using chromatographic methods, and the oligomeric state of bacteriorhodopsin was verified using visible wavelength circular dichroism. The function of bacteriorhodopsin, which is connected to its photocycle, was investigated using transient absorption spectroscopy and transient photocurrent measurements. Finally, protein production and purification processes are also presented in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hong P, Koza S, Bouvier ESP (2012) Size-exclusion chromatography for the analysis of protein biotherapeutics and their aggregates. J Liq Chromatogr Relat Technol 35:2923–2950. https://doi.org/10.1080/10826076.2012.743724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Heyn MP, Cherry RJ, Dencher NA (1981) Lipid-protein interactions in bacteriorhodopsin-dimyristoylphosphatidylcholine vesicles. Biochemistry (Mosc) 20:840–849. https://doi.org/10.1021/bi00507a029

    Article  CAS  Google Scholar 

  3. Becher B, Ebrey TG (1976) Evidence for chromophore-chromophore (exciton) interaction in the purple membrane of Halobacteriumhalobium. Biochem Biophys Res Commun 69:1–6. https://doi.org/10.1016/S0006-291X(76)80263-X

    Article  CAS  PubMed  Google Scholar 

  4. Pescitelli G, Woody RW (2012) The exciton origin of the visible circular dichroism spectrum of bacteriorhodopsin. J Phys Chem B 116:6751–6763. https://doi.org/10.1021/jp212166k

    Article  CAS  PubMed  Google Scholar 

  5. Kuo C-L, Chu L-K (2014) Modeling of photocurrent kinetics upon pulsed photoexcitation of photosynthetic proteins: a case of bacteriorhodopsin. Bioelectrochemistry 99:1–7. https://doi.org/10.1016/j.bioelechem.2014.05.003

    Article  CAS  PubMed  Google Scholar 

  6. Miyasaka T, Koyama K (1992) Rectified photocurrents from purple membrane Langmuir-Blodgett films at the electrode-electrolyte interface. Thin solid films 210–211. Part 1:146–149. https://doi.org/10.1016/0040-6090(92)90193-F

    Article  Google Scholar 

  7. Liu SY, Govindjee R, Ebrey TG (1990) Light-induced currents from oriented purple membrane: II. Proton and cation contributions to the photocurrent. Biophys J 57:951–963. https://doi.org/10.1016/S0006-3495(90)82615-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Okajima TL, Hong FT (1986) Kinetic analysis of displacement photocurrents elicited in two types of bacteriorhodopsin model membranes. Biophys J 50:901–912. https://doi.org/10.1016/S0006-3495(86)83531-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Simmeth R, Rayfield GW (1990) Evidence that the photoelectric response of bacteriorhodopsin occurs in less than 5 picoseconds. Biophys J 57:1099–1101. https://doi.org/10.1016/S0006-3495(90)82629-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Craik DJ, Allewell NM (2012) Thematic minireview series on circular proteins. J Biol Chem 287:26999–27000. https://doi.org/10.1074/jbc.R112.390344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Craik DJ, Čemažar M, Wang CKL, Daly NL (2006) The cyclotide family of circular miniproteins: nature’s combinatorial peptide template. Pept Sci 84:250–266. https://doi.org/10.1002/bip.20451

    Article  CAS  Google Scholar 

  12. Nasr ML, Baptista D, Strauss M et al (2016) Covalently circularized nanodiscs for studying membrane proteins and viral entry. Nat Methods advance online publication: https://doi.org/10.1038/nmeth.4079

    Article  Google Scholar 

  13. Yusuf Y, Massiot J, Chang Y-T et al (2018) Optimization of the production of covalently circularized nanodiscs and their characterization in physiological conditions. Langmuir 34:3525–3532. https://doi.org/10.1021/acs.langmuir.8b00025

    Article  CAS  PubMed  Google Scholar 

  14. Antos JM, Popp MW-L, Ernst R et al (2009) A straight path to circular proteins. J Biol Chem 284:16028–16036. https://doi.org/10.1074/jbc.M901752200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Oesterhelt D, Stoeckenius W (1974) Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane. Methods Enzymol 31:667–678

    Article  CAS  Google Scholar 

  16. Hsu M-F, Yu T-F, Chou C-C et al (2013) Using haloarcula marismortui bacteriorhodopsin as a fusion tag for enhancing and visible expression of integral membrane proteins in Escherichia coli. PLoS One 8:e56363. https://doi.org/10.1371/journal.pone.0056363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cai M, Huang Y, Sakaguchi K et al (1998) An efficient and cost-effective isotope labeling protocol for proteins expressed in shape Escherichia coli. J Biomol NMR 11:97–102

    Article  CAS  Google Scholar 

  18. Birge RR, Gillespie NB, Izaguirre EW et al (1999) Biomolecular electronics: protein-based associative processors and volumetric memories. J Phys Chem B 103:10746–10766. https://doi.org/10.1021/jp991883n

    Article  CAS  Google Scholar 

  19. Yeh V, Lee T-Y, Chen C-W et al (2018) Highly efficient transfer of 7TM membrane protein from native membrane to covalently circularized nanodisc. Scientific Reports 8(1)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yeh, V. (2019). Experimental Background. In: Study of Bacteriorhodopsin in a Controlled Lipid Environment. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-1238-0_2

Download citation

Publish with us

Policies and ethics