Skip to main content

Heat Transfer Enhancement in a Circular Tube Fitted with Twisted Tape Having Continuous Cut Edges Using CuO-Water Nanofluid

  • Conference paper
  • First Online:

Abstract

The use of new kind of insert, namely twisted tape, having continuous cut edges in a horizontal circular tube with CuO-water nanofluid flowing in turbulent conditions was experimentally investigated for heat transfer enhancement and pressure drop penalty. The new twisted tape having rectangular cut made continuously on both the edges throughout the length is used with twist ratio 3 & 5, depth ratio (d/W) 0.025, and width ratio (w/W) 0.05. The experimental setup was validated by comparing the results obtained for water flowing in plain tube and tube with conventional twisted tape with the standard correlations. The CuO-water nanofluid in 0.5% volume concentration with 50 nm average nanoparticle size was used in investigations. The results of new twisted tape have been compared with the values for the plain tube and tube with conventional twisted tape for water and nanofluid both. In addition, the effects of the new twisted tape insert on the thermal performance factor are also investigated. It was concluded from the results that augmented rate of heat transfer can be accomplished with the use of twisted insert with continuous cut edges at the outlay of rational frictional penalty resulting in higher thermal performance factor.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

A :

Heat transfer surface area, m2

c p :

Specific heat of fluid, kJ/kgK

D :

Inside diameter of the tube, mm

d :

Depth of cut, mm

f :

Friction factor

h :

Heat transfer coefficient, W/m2K

I :

Current, A

k :

Thermal conductivity of fluid, W/mK

L :

Length of the test section, m

m :

Mass flow rate of water, kg/s

Nu :

Nusselt Number

P :

Pressure, kPa

ΔP :

Pressure drop, kPa

Pr :

Prandtl Number

Q :

Heat transfer rate, W

Re :

Reynolds Number

t :

Thickness of the test tube, mm

ΔT :

Temperature difference, ºC

T :

Temperature, ºC

\(\tilde{T}\) :

Average temperature, ºC

U :

Mean axial flow velocity, m/s

V :

Voltage, V

w :

Width of cut, mm

W :

Twisted tape width, mm

y/W :

Twist ratio

ρ :

Fluid density, kg/m3

δ :

Twisted tape thickness, mm

µ :

Dynamic viscosity, kg/m-sec

η :

Thermal performance factor

b :

Bulk

c :

Convection

i :

Inlet

o :

Outlet

p :

Plain

s :

Surface

t :

Turbulator

w :

Water

PT :

Plain tube

TT :

Twisted tape

CCTT :

Continuous cut twisted tape

R-CCTT :

Continuous rectangular cut TT

References

  1. Saysroy, A., Eiamsa-ard, S.: Enhancing convective heat transfer in laminar and turbulent flow regions using multi-channel twisted tape inserts. Int. J. Therm. Sci. 121, 55–74 (2017). https://doi.org/10.1016/j.ijthermalsci.2017.07.002

    Article  Google Scholar 

  2. Lin, Z.M., Wang, L.B., Lin, M., Dang, W., Zhang, Y.H.: Numerical study of the laminar flow and heat transfer characteristics in a tube inserting a twisted tape having parallelogram winglet vortex generators. Appl. Therm. Eng. 115, 644–658 (2017). https://doi.org/10.1016/j.applthermaleng.2016.12.142

    Article  Google Scholar 

  3. Zheng, L., Xie, Y., Zhang, D.: Numerical investigation on heat transfer performance and flow characteristics in circular tubes with dimpled twisted tapes using Al2O3-water nanofluid. Int. J. Heat Mass Transf. 111, 962–981 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.062

    Article  Google Scholar 

  4. Dewan, A., Mahanta, P., Raju, K.S., Kumar, P.S.: Review of passive heat transfer augmentation techniques. Proc. Inst. Mechanical Eng. Part A: J. Power Energy 218(7), 509–527 (2004)

    Article  Google Scholar 

  5. Man, C., Yao, J., Wang, C.: The experimental study on the heat transfer and friction factor characteristics in tube with a new kind of twisted tape insert. Int. Commun. Heat Mass Transfer 75, 124–129 (2016)

    Article  Google Scholar 

  6. Rahimi, M., Shabanian, S.R., Alsairafi, A.A.: Experimental and CFD studies on heat transfer and friction factor characteristics of a tube equipped with modified twisted tape inserts. Chem. Eng. Process. 48(3), 762–770 (2009)

    Article  Google Scholar 

  7. Seemawute, P., Eiamsa-Ard, S.: Thermohydraulics of turbulent flow through a round tube by a peripherally-cut twisted tape with an alternate axis. Int. Commun. Heat Mass Transfer 37(6), 652–659 (2010)

    Article  Google Scholar 

  8. Hasanpour, A., Farhadi, M., Sedighi, K.: Experimental heat transfer and pressure drop study on typical, perforated, V-cut and U-cut twisted tapes in a helically corrugated heat exchanger. Int. Commun. Heat Mass Transfer 71, 126–136 (2016)

    Article  Google Scholar 

  9. Salman, S.D., Kadhum, A.A.H., Takriff, M.S., Mohamad, A.B.: Numerical investigation of heat transfer and friction factor characteristics in a circular tube fitted with V-cut twisted tape inserts. Sci. World J. 2013 (2013)

    Google Scholar 

  10. Salman, S.D., Kadhum, A.A.H., Takriff, M.S., Mohamad, A.B.: CFD analysis of heat transfer and friction factor characteristics in a circular tube fitted with parabolic-cut twisted tape inserts. Aust. J. Basic Appl. Sci. 7(7), 69–76 (2013)

    Google Scholar 

  11. Murugesan, P., Mayilsamy, K., Suresh, S.: Turbulent heat transfer and pressure drop in tube fitted with square-cut twisted tape. Chin. J. Chem. Eng. 18(4), 609–617 (2010)

    Article  Google Scholar 

  12. Murugesan, P., Mayilsamy, K., Suresh, S., Srinivasan, P.S.S.: Heat transfer and pressure drop characteristics of turbulent flow in a tube fitted with trapezoidal-cut twisted tape insert. Int. J. Acad. Res. 1(1), 123–128 (2009)

    Google Scholar 

  13. Murugesan, P., Mayilsamy, K., Suresh, S.: Heat transfer in tubes fitted with trapezoidal-cut and plain twisted tape inserts. Chem. Eng. Commun. 198(7), 886–904 (2011)

    Article  Google Scholar 

  14. Murugesan, P., Mayilsamy, K., Suresh, S.: Heat transfer and friction factor in a tube equipped with U-cut twisted tape insert. Jordan J. Mech. Ind. Eng. 5(6), 559–565 (2011)

    Google Scholar 

  15. Murugesan, P., Mayilsamy, K., Suresh, S.: Heat transfer in a tube fitted with vertical and horizontal wing-cut twisted tapes. Exp. Heat Transf. 25(1), 30–47 (2012)

    Article  Google Scholar 

  16. Prasad, P.D., Gupta, A.V.S.S.K.S., Deepak, K.: Investigation of trapezoidal-cut twisted tape insert in a double pipe U-tube heat exchanger using Al2O3/water nanofluid. Proc. Mater. Sci. 10, 50–63 (2015)

    Article  Google Scholar 

  17. Eiamsa-Ard, S., Wongcharee, K., Eiamsa-Ard, P., Thianpong, C.: Heat transfer enhancement in a tube using delta-winglet twisted tape inserts. Appl. Therm. Eng. 30(4), 310–318 (2010)

    Article  Google Scholar 

  18. Choi, S.U.S.: Enhancing thermal conductivity of fluids with nanoparticles. Off. Sci. Tech. Inform. Tech. Rep. 231(1), 99–105 (1995)

    Google Scholar 

  19. Saidur, R.K., Leong, Y., Mohammad, H.A.: A review on applications and challenges of nanofluids. Renew. Sustain. Energy Rev. 15, 1646–1668 (2011)

    Article  Google Scholar 

  20. Khanafer, K.K., Vafai, K.: A critical synthesis of thermophysical characteristics of nanofluids. Int. J. Heat Mass Transfer 54, 4410–4428 (2011)

    Article  Google Scholar 

  21. Fan, J., Wang, L.Q.: Review of heat conduction in nanofluids. ASME J. Heat Transfer 133, 040801 (2011)

    Article  Google Scholar 

  22. Sidika, N.A.C., Samiona, S., Musa, M.N., Muhammad, M.J., Muhammad, A.I., Yazid, M.N.A.W.M., Mamat, R.: The significant effect of turbulence characteristics on heat transfer enhancement using nanofluids: a comprehensive review. Int. Commun. Heat Mass Transf. 72, 39–47 (2016). https://doi.org/10.1016/j.icheatmasstransfer.2016.01.002

    Article  Google Scholar 

  23. Azmi, W.H., Sharma, K.V., Mamat, R., Anuar, S.: Turbulent forced convection heat transfer of nanofluids with twisted tape insert in a plain tube. Energy Proc. 52, 296–307 (2014). https://doi.org/10.1016/j.egypro.2014.07.081

    Article  Google Scholar 

  24. Sundar L.S., Sousa A.C.M., Singh M.K.: Heat transfer enhancement of low volume concentration of carbon nanotube-Fe3O4/water hybrid nanofluids in a tube with twisted tape inserts under turbulent flow. J. Therm. Sci. Eng. Appl. 7, 021015-1-12 (2015). https://doi.org/10.1115/1.4029622

  25. Aliabadi, M.K., Eskandari, M.: Influence of twist length variations on thermal–hydraulic specifications of twisted-tape inserts in presence of Cu–water nanofluid. Exp. Thermal Fluid Sci. 61, 230–240 (2015)

    Article  Google Scholar 

  26. Maddah, H., Alizadeh, M., Ghasemi, N., Alwid, S.R.W.: Experimental study of Al2O3/water nanofluid turbulent heat transfer enhancement in the horizontal double pipes fitted with modified twisted tapes. Int. J. Heat Mass Transf. 78, 1042–1054 (2014). https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.059

    Article  Google Scholar 

  27. Fotukian, S.M., Esfahany, M.N.: Experimental study of turbulent convective heat transfer and pressure drop of dilute CuO/water nanofluid inside a circular tube. Int. Commun. Heat Mass Transfer 37(2), 214–219 (2010)

    Article  Google Scholar 

  28. Li, Calvin H., Peterson, G.P.: Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticles suspensions (nanofluids). J. Appl. Phys. 99(084314), 1–8 (2006)

    Google Scholar 

  29. Bergman, T.L., Incropera, F.P.: Fundamentals of heat and mass transfer. Wiley, Berlin (2011)

    Google Scholar 

  30. Eiamsa-Ard, S., Promvonge, P.: Performance assessment in a heat exchanger tube with alternate clockwise and counter-clockwise twisted-tape inserts. Int. J. Heat Mass Transf. 53(7), 1364–1372 (2010)

    Article  Google Scholar 

  31. Manglik, R.M., Bergles, A.E.: Heat transfer and pressure drop correlations for twisted-tape inserts in isothermal tubes: part II-transition and turbulent flows. Trans. Am. Soc. Mech. Eng. J. Heat Transfer 115, 890 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veeresh Fuskele .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fuskele, V., Sarviya, R.M. (2019). Heat Transfer Enhancement in a Circular Tube Fitted with Twisted Tape Having Continuous Cut Edges Using CuO-Water Nanofluid. In: Drück, H., Pillai, R., Tharian, M., Majeed, A. (eds) Green Buildings and Sustainable Engineering. Springer Transactions in Civil and Environmental Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-1202-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1202-1_32

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1201-4

  • Online ISBN: 978-981-13-1202-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics