Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 314 Accesses

Abstract

To clarify the interfacial mechanical effect and micro-mechanism of the interaction between Pb and soil, the effect of different concentrations of Pb contamination on chemical properties, such as cation exchange capacity (CEC), pH value and oxidation–reduction potential (ORP), and engineering characteristics, such as particle distribution, permeability, compaction, shear strength, compression and expansion characteristics, were studied on typical clay in central China. The evolution rules of the microstructure of Pb-contaminated clay were analyzed by XRD, SEM, and MIP tests, providing theoretical and parameter support for the S/S remediation of a Pb-contaminated soil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Souli H, Fleureau JM, Ayadi MT, et al. Physicochemical analysis of permeability changes in the presence of zinc. Geoderma. 2008;145(1–2):1–7.

    Article  Google Scholar 

  2. Ouhadi VR, Goodarzi AR. Assessment of the dispersive soil treated by alum. Eng Geol. 2006;85(1–2):91–101.

    Article  Google Scholar 

  3. Guo GH, Wu FC, Xie FZ, et al. Spatial distribution and pollution assessment of heavy metals in urban soils from southwest China. J Environ Sci. 2012;24(3):410–8.

    Article  Google Scholar 

  4. Mulligan CN, Yong RN, Gibbs BF. Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol. 2001;60(1–4):193–207.

    Article  Google Scholar 

  5. Turer D. Effect of heavy metal and alkali contamination on the swelling properties of kaolinite. Environ Geol. 2007;52(3):421–5.

    Article  Google Scholar 

  6. Oztoprak S, Pisirici B. Effects of micro structure changes on the macro behaviour of Istanbul (Turkey) clays exposed to landfill leachate. Eng Geol. 2011;121(3–4):110–22.

    Article  Google Scholar 

  7. GB/T50123-1999. Standard for soil test method. Beijing; 1999.

    Google Scholar 

  8. Tessier A, Campbell PGC, Blasson M. Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem. 1979;51(7):844–51.

    Article  Google Scholar 

  9. Liao BH, Seip HM, Larssen T. Response of two Chinese forest soils to acidic inputs: leaching experiment. Geoderma. 1997;75(1–2):53–73.

    Google Scholar 

  10. Hendershot WH, Duquette M. A simple barium chloride method for determining cation exchange capacity and exchangeable cation. Soil Sci Soc Am J. 1986;50(3):605–8.

    Article  Google Scholar 

  11. Griffin RA, Shimp NF, Steele JD. Attenuation of pollutants in municipal landfill leachate by passage through clay. Environ Sci Technol. 1976;10(13):1262–8.

    Article  Google Scholar 

  12. Yong RN, Phadangchewit Y. pH influence on selectivity and retention of heavy metals in some clay soils. Can Geotech J. 1993;30(5):821–33.

    Article  Google Scholar 

  13. Yoon YH, Nelson JH. Application of gas adsorption kinetics-II. A theoretical model for respirator cartridge service time. Am Ind Hyg Assoc J. 1984;45(8):517–24.

    Article  Google Scholar 

  14. Alloway BJ. Heavy metals in soils. 2nd ed. London: Blackie; 1990. p. 7–28.

    Google Scholar 

  15. Horváth T, Szilágyi V, Hartyáni Z. Characterization of trace element distributions in soils. Microchem J. 2000;67(1–3):53–6.

    Article  Google Scholar 

  16. Nayak S, Sunil BM, Shrihari S, et al. Interactions between soils and laboratory simulated electrolyte solution. Geotech Geol Eng. 2010;28(6):899–906.

    Article  Google Scholar 

  17. Singh S, Prasad A. Effect of chemicals on compacted clay liner. Electron J Geotech Eng. 2007;12D:1–14.

    Google Scholar 

  18. Arasan S, Yetimoglu T. Effect of inorganic salt solutions on the consistency limits of two clays. Turk J Eng Env Sci. 2008;32:107–15.

    Google Scholar 

  19. Met I, Akgun H, Turkmenoglu AG. Environmental geological and geotechnical investigations related to the potential use of Ankara clay as a compacted landfill liner material, Turkey. Environ Geol. 2005;47(2):225–36.

    Article  Google Scholar 

  20. Schmitz RM, Schroeder C, Charlier R. Chemo-mechanical interactions in clay: a correlation between clay mineralogy and Atterberg limits. Appl Clay Sci. 2004;26(1–4):351–8.

    Article  Google Scholar 

  21. Mitchell JK, Soga K. Fundamentals of soil behavior. 2nd ed. New York: Wiley; 1993.

    Google Scholar 

  22. Warkentin BP. Interpretation of the upper plastic limit of clays. Nature. 1961;190(4772):287–8.

    Article  Google Scholar 

  23. Yong RN. Geoenvironmental engineering, contaminated soils, pollutant fate and mitigation. Boca Raton: CRC Press; 2001. p. 307.

    Google Scholar 

  24. Sridharan, A. (2001) Engineering behavior of clays: influence of mineralogy. In: Chemo-mechanical coupling in clays, from nano-scale to engineering applications. The Netherlands: Swets and Zeitlinger Press, p. 3–28.

    Google Scholar 

  25. Li ZZ, Katsumi T, Inui T, et al. Fabric effect on hydraulic conductivity of kaolin under different chemical and biochemical conditions. Soils Found. 2013;53(5):680–91.

    Article  Google Scholar 

  26. Rao SN, Mathew PK. Effects of exchangeable cations on hydraulic conductivity of a marine clay. Clays Clay Miner. 1995;43(4):433–7.

    Article  Google Scholar 

  27. Shackelford CD, Benson CH, Katsumi T, et al. Evaluating the hydraulic conductivity of GCLs permeated with non-standard liquids. Geotext Geomembr. 2000;18:133–61.

    Article  Google Scholar 

  28. Mishra AK, Ohtsubo M, Li L, et al. Effect of salt concentrations on the permeability and compressibility of soil-bentonite mixtures. J Fac Agric. 2005;50(2):837–49.

    Google Scholar 

  29. Resmi G, Thampi SG, Chandrakaran S. Impact of lead contamination on the engineering properties of clayey soil. J Geol Soc India. 2011;77(1):42–6.

    Article  Google Scholar 

  30. Jo HY, Benson CH, Shackelford CD, et al. Long-term hydraulic conductivity of a geosynthetic clay liner permeated with inorganic salt solutions. J Geotech Geoenviron Eng. 2005;131(4):405–17.

    Article  Google Scholar 

  31. Yilmaz G, Yetimoglu T, Arasan S. Hydraulic conductivity of compacted clay liners permeated with inorganic salt solutions. Waste Manage Res. 2008;26(5):464–73.

    Article  Google Scholar 

  32. Quigley RM. Clay minerals against contaminant migration. Geotech News North Am Geotech Commun. 1993;11(4):44–6.

    Google Scholar 

  33. Sridharan A, Benkatappa RG. Mechanisms controlling volume change of saturated clay and the role of effective stress concept. Geotechnique. 1973;23(3):359–82.

    Article  Google Scholar 

  34. Ouhadi VR, Yong RN, Sedighi M. Influence of heavy metal contaminants at variable pH regimes on rheological behaviour of bentonite. Appl Clay Sci. 2006;32(3–4):217–31.

    Article  Google Scholar 

  35. Butterfield R. A natural compression law for soils (an advance on e-logp’). Geotechnique. 1979;29(4):469–80.

    Article  Google Scholar 

  36. Horpibulsuk S, Shibuya S, Fuenkajorn K, et al. Assessment of engineering properties of Bangkok clay. Can Geotech J. 2007;44(2):173–87.

    Article  Google Scholar 

  37. Ayininuola GM, Agbede OA, Franklin SO. Influence of calcium sulphate on subsoil cohesion and angle of friction. J Appl Sci Res. 2009;5(3):297–304.

    Google Scholar 

  38. Tiwari B, Tuladhar GR, Marui H. Variation in residual shear strength of the soil with the salinity of pore fluid. J Geotech Geoenviron Eng. 2005;131(12):1445–56.

    Article  Google Scholar 

  39. Wen BP, He L. Influence of lixiviation by irrigation water on residual shear strength of weathered red mudstone in northwest China: implication for its role in landslides’ reactivation. Eng Geol. 2012;151(29):56–63.

    Article  Google Scholar 

  40. Yun TS, Santamarina JC, Ruppel C. Mechanical properties of sand, silt, and clay containing tetrahydrofuran hydrate. J Geophys Res Solid Earth. 2007;112(B4):106.

    Article  Google Scholar 

  41. Lambe TW. The structure of compacted clay. J Soil Mech Found Div ASCE. 2007;84:1–35.

    Google Scholar 

  42. Cho GC, Dodds J, Santamarina JC. Particle shape effects on packing density, stiffness and strength-natural and crushed sands. J Geotech Geoenviron Eng. 2006;132(5):591–602.

    Article  Google Scholar 

  43. Wu H, Hu LM. Microfabric change of electro-osmotic stabilized bentonite. Appl Clay Sci. 2014;101:503–9.

    Article  Google Scholar 

  44. Sala GH, Tessier D. Importance de l’état énergétique de l’eau sur l’aptitude au tassement de matériaux argileux non saturés. C R Acad Sci Sér 2 Méc Phys Chim Sci Univ Sci Terre. 1993;316(2):231–6.

    Google Scholar 

  45. Yong RN, Ouhadi VR, Goodarzi AR. Effect of Cu2+ ions and buffering capacity on smectite microstructure and performance. J Geotech Geoenviron Eng. 2009;135(12):1981–5.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang-shan Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, Js. (2019). Interfacial Mechanical Effect and Micro-mechanism of Pb–Soil Interaction. In: Evolution Mechanism on Structural Characteristics of Lead-Contaminated Soil in the Solidification/Stabilization Process. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-1193-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1193-2_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1192-5

  • Online ISBN: 978-981-13-1193-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics