Skip to main content

Application of Plant-Microbe Interactions in Contaminated Agroecosystem Management

  • Chapter
  • First Online:
Phytobiont and Ecosystem Restitution

Abstract

Agroecosystem is often confronted with a variety of pollutants. The application of plant-microbe interactions in remedying the ecosystem is called phytoremediation. Within the rhizosphere, plant roots interact with microorganisms and the soil, and plants usually secrete substances which affect microbial growth. Some plant-microbe relationships are beneficial to the plant while others are not. However, these interactions largely ensure a healthy plant growth while eliminating plant pathogens from the soil either by separate or combined activities of the plant exudates and beneficial microbes. The nature of microbes associated with each plant is apparently related to the exudates and signal molecules emanating from the plant and the interactive signals of the microbes. Sometimes, the soil is contaminated either deliberately or inadvertently by a variety of chemicals and heavy metals. To control or eliminate these contaminants, chemical and physical means have largely been applied. Unfortunately, some of these control measures introduce their own contaminants thereby causing secondary contamination. This necessitates the need and application of eco-friendly and sustainable solar-driven technology, viz., phytoremediation, to restitute the soils. Microbe-plant interactions sometimes improve the absorptive capacity of the plant for contaminants. Some microbes modify soil contaminants by using organic acids, redox reactions, producing siderophores, metal chelators, biosurfactants, causing bioleaching, biosorption, and bioexclusion. These microbes-contaminants interactions boost the reduction of toxicity and elimination of contaminants via various phytoremediation processes, viz., phytostimulation, phytodegradation, phytoextraction/phytoaccumulation, phytostabilization, phytovolatilization, and rhizofiltration. Nevertheless, phytoremediation faces certain major challenges as regards to its commercial-scale application in the field. To overcome these limitations, it is essential to have a better understanding of the relationships among plant microbes, soil types, chemicals, and heavy metal contaminants within an agroecosystem. Besides, it is important to develop phyto-hyper-accumulators and super microbial solubilizers, for various soil types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhilash P, Powell JR, Singh HB, Singh BK (2012) Plant–microbe interactions: novel applications for exploitation in multipurpose remediation technologies. Trends Biotechnol 30(8):416–420

    Article  CAS  PubMed  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26(1):1–20

    Article  Google Scholar 

  • Ahmad F, Ahmad I, Khan M (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163(2):173–181

    Article  CAS  PubMed  Google Scholar 

  • Al-Askar A, Rashad Y (2010) Arbuscular mycorrhizal fungi: a biocontrol agent against common bean fusarium root rot disease. Plant Pathol J 9(1):31–38

    Article  Google Scholar 

  • Amir H, Lagrange A, Hassaïne N, Cavaloc Y (2013) Arbuscular mycorrhizal fungi from New Caledonian ultramafic soils improve tolerance to nickel of endemic plant species. Mycorrhiza 23(7):585–595

    Article  CAS  PubMed  Google Scholar 

  • Antoun H, Prévost D (2005) Ecology of plant growth promoting rhizobacteria PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 1–38

    Google Scholar 

  • Arthur EL, Rice PJ, Rice PJ, Anderson TA, Baladi SM, Henderson KL, Coats JR (2005) Phytoremediation—an overview. Crit Rev Plant Sci 24(2):109–122

    Article  CAS  Google Scholar 

  • Ashry NA, Mohamed HI (2012) Impact of secondary metabolites and related enzymes in flax resistance and/or susceptibility to powdery mildew. Afr J Biotechnol 11(5):1073–1077

    CAS  Google Scholar 

  • Bach E, dos Santos Seger GD, de Carvalho Fernandes G, Lisboa BB, Passaglia LMP (2016) Evaluation of biological control and rhizosphere competence of plant growth promoting bacteria. Appl Soil Ecol 99:141–149

    Article  Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32(6):666–681

    Article  CAS  PubMed  Google Scholar 

  • Badri DV, Weir TL, van der Lelie D, Vivanco JM (2009) Rhizosphere chemical dialogues: plant–microbe interactions. Curr Opin Biotechnol 20(6):642–650

    Article  CAS  PubMed  Google Scholar 

  • Bailly A, Weisskopf L (2012) The modulating effect of bacterial volatiles on plant growth: current knowledge and future challenges. Plant Signal Behav 7(1):79–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trend Plant Sci 9:26–32

    Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivancohe JM (2006) The role of root exudates in Rhizosphere interactions with plants and other organisms. Ann Rev Plant Biol 57:233–266

    Google Scholar 

  • Bakker AW, Schippers B (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp-mediated plant growth-stimulation. Soil Biol Biochem 19(4):451–457

    Article  CAS  Google Scholar 

  • Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV et al (2004) Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol 22(5):583–588

    Article  CAS  PubMed  Google Scholar 

  • Barea J, Andrade G, Bianciotto V, Dowling D, Lohrke S, Bonfante P et al (1998) Impact on arbuscular mycorrhiza formation of pseudomonas strains used as inoculants for biocontrol of soil-borne fungal plant pathogens. Appl Environ Microbiol 64(6):2304–2307

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer WD, Mathesius U (2004) Plant responses to bacterial quorum sensing signals. Curr Opin Plant Biol 7(4):429–433

    Article  CAS  PubMed  Google Scholar 

  • Beolchini F, Dell’Anno A, De Propris L, Ubaldini S, Cerrone F, Danovaro R (2009) Auto-and heterotrophic acidophilic bacteria enhance the bioremediation efficiency of sediments contaminated by heavy metals. Chemosphere 74(10):1321–1326

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya P, Jha D (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28(4):1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Bianciotto V, Andreotti S, Balestrini R, Bonfante P, Perotto S (2009) Extracellular polysaccharides are involved in the attachment of Azospirillum brasilense and Rhizobium leguminosarum to arbuscular mycorrhizal structures. Eur J Histochem 45(1):39–50

    Article  Google Scholar 

  • Birhane E, Sterck FJ, Fetene M, Bongers F, Kuyper TW (2012) Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions. Oecologia 169(4):895–904

    Article  PubMed  PubMed Central  Google Scholar 

  • Biswas B, Sarkar B, Rusmin R, Naidu R (2015) Bioremediation of PAHs and VOCs: advances in clay mineral-microbial interaction. Environ Int 85:168–181

    Article  CAS  PubMed  Google Scholar 

  • Bonilla A, Sarria A, Algar E, Ledesma FM, Solano BR, Fernandes J, Mañero FG (2014) Microbe associated molecular patterns from rhizosphere bacteria trigger germination and Papaver somniferum metabolism under greenhouse conditions. Plant Physiol Biochem 74:133–140

    Article  CAS  PubMed  Google Scholar 

  • Braud A, Jézéquel K, Vieille E, Tritter A, Lebeau T (2006) Changes in extractability of Cr and Pb in a polycontaminated soil after bioaugmentation with microbial producers of biosurfactants, organic acids and siderophores. Water Air Soil Pollut: Focus 6(3):261–279

    Article  CAS  Google Scholar 

  • Braud A, Jézéquel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural Cr-and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 74(2):280–286

    Article  CAS  PubMed  Google Scholar 

  • Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45(3):198–207

    Article  CAS  PubMed  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    Article  CAS  PubMed  Google Scholar 

  • Campanella BF, Bock C, Schröder P (2002) Phytoremediation to increase the degradation of PCBs and PCDD/Fs. Environ Sci Pollut Res 9(1):73–85

    Article  CAS  Google Scholar 

  • Castelfranco P, Foy CL, Deutsch DB (1961) Non-enzymatic detoxification of 2-chloro-4, 6-bis (ethylamino)-s-triazine (simazine) by extracts of Zea mays. Weeds 9:580–591

    Google Scholar 

  • Castro MS, Fontes W (2005) Plant defense and antimicrobial peptides. Protein Pept Lett 12(1):11–16

    Article  Google Scholar 

  • Cavagnaro TR, Bender SF, Asghari HR, van der Heijden MG (2015) The role of arbuscular mycorrhizas in reducing soil nutrient loss. Trends Plant Sci 20(5):283–290

    Article  CAS  PubMed  Google Scholar 

  • Cha, C., Gao, P., Chen, Y.-C., and Shaw, P. D. (1998). Farrand SK 1998. Production of acyl-homoserine lactone quorum-sensing signals by Gram-negative plant-associated bacteria. Mol Plant-Microbe Interact, 11, 1119–1129

    Article  CAS  PubMed  Google Scholar 

  • Chagnon P-L, Bradley RL (2015) The relative importance of host vigor and hormonal response to pathogens in controlling the development of arbuscular mycorrhizal fungi. Soil Biol Biochem 83:40–42

    Article  CAS  Google Scholar 

  • Chaparro JM, Badri DV, Bakker MG, Sugiyama A, Manter DK, Vivanco JM (2013) Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS One 8(2):e55731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee S, Sau GB, Mukherjee SK (2009) Plant growth promotion by a hexavalent chromium reducing bacterial strain, Cellulosimicrobium cellulans KUCr3. World J Microbiol Biotechnol 25(10):1829–1836

    Article  CAS  Google Scholar 

  • Chen YX, Wang YP, Lin Q, Luo YM (2005) Effect of copper-tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens. Environ Int 31(6):861–866

    Article  CAS  PubMed  Google Scholar 

  • Chernin L, Toklikishvili N, Ovadis M, Kim S, Ben-Ari J, Khmel I, Vainstein A (2011) Quorum-sensing quenching by rhizobacterial volatiles. Environ Microbiol Rep 3(6):698–704

    Article  CAS  PubMed  Google Scholar 

  • Chojnacka K (2010) Biosorption and bioaccumulation–the prospects for practical applications. Environ Int 36(3):299–307

    Article  CAS  PubMed  Google Scholar 

  • Coleman J, Blake-Kalff M, Davies E (1997) Detoxification of xenobiotics by plants: chemical modification and vacuolar compartmentation. Trends Plant Sci 2(4):144–151

    Article  Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, Cortés-Penagos C, López-Bucio J (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 149(3):1579–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crowley DE, Kraemer SM (2007) Function of siderophores in the plant rhizosphere. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interface, 2nd edn. CRC Press, Boca Raton, pp 173–200

    Google Scholar 

  • Cruz-Hernández A, Tomasini-Campocosio A, Pérez-Flores L, Fernández-Perrino F, Gutiérrez-Rojas M (2013) Inoculation of seed-borne fungus in the rhizosphere of Festuca arundinacea promotes hydrocarbon removal and pyrene accumulation in roots. Plant Soil 362(1–2):261–270

    Article  CAS  Google Scholar 

  • da Costa PB, Granada CE, Ambrosini A, Moreira F, de Souza R, dos Passos JFM et al (2014) A model to explain plant growth promotion traits: a multivariate analysis of 2,211 bacterial isolates. PloS One 9(12):e116020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245(1):35–47

    Article  CAS  Google Scholar 

  • Daniels R, Vanderleyden J, Michiels J (2004) Quorum sensing and swarming migration in bacteria. FEMS Microbiol Rev 28(3):261–289

    Article  CAS  PubMed  Google Scholar 

  • Das A, Prasad R, Srivastava A, Giang PH, Bhatnagar K, Varma A (2007) Fungal siderophores: structure, functions and regulations. In: Varma A, Chincholkar SB (eds) Microbial Siderophores, vol 12. Springer-Verlag, Berlin Heidelberg, pp 1–42

    Chapter  Google Scholar 

  • Del Fabbro C, Prati D (2014) Early responses of wild plant seedlings to arbuscular mycorrhizal fungi and pathogens. Basic Appl Ecol 15(6):534–542

    Article  Google Scholar 

  • Delvasto P, Ballester A, Muñoz J, González F, Blázquez M, Igual J et al (2009) Mobilization of phosphorus from iron ore by the bacterium Burkholderia caribensis FeGL03. Miner Eng 22(1):1–9

    Article  CAS  Google Scholar 

  • Dewey F, Wong YL, Seery R, Hollins T, Gurr S (1999) Bacteria associated with Stagonospora (Septoria) nodorum increase pathogenicity of the fungus. New Phytol 144(3):489–497

    Article  PubMed  Google Scholar 

  • Di Gregorio S, Lampis S, Vallini G (2005) Selenite precipitation by a rhizospheric strain of Stenotrophomonas sp. isolated from the root system of Astragalus bisulcatus: a biotechnological perspective. Environ Int 31(2):233–241

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa C, Merten D, SvatoÅ¡ A, Büchel G, Kothe E (2009a) Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. J Appl Microbiol 107(5):1687–1696

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa CO, Merten D, SvatoÅ¡ A, Büchel G, Kothe E (2009b) Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores. Soil Biol Biochem 41(1):154–162

    Article  CAS  Google Scholar 

  • Djonović S, Pozo MJ, Dangott LJ, Howell CR, Kenerley CM (2006) Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. Mol Plant-Microbe Interact 19(8):838–853

    Article  CAS  PubMed  Google Scholar 

  • Dong Y-H, Wang L-H, Xu J-L, Zhang H-B, Zhang X-F, Zhang L-H (2001) Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411(6839):813–817

    Article  CAS  PubMed  Google Scholar 

  • Doornbos RF, van Loon LC, Bakker PA (2012) Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review. Agron Sustain Dev 32(1):227–243

    Article  Google Scholar 

  • Drogue B, Doré H, Borland S, Wisniewski-Dyé F, Prigent-Combaret C (2012) Which specificity in cooperation between phytostimulating rhizobacteria and plants? Res Microbiol 163(8):500–510

    Article  PubMed  Google Scholar 

  • Eapen S, Singh S, D'souza S (2007) Advances in development of transgenic plants for remediation of xenobiotic pollutants. Biotechnol Adv 25(5):442–451

    Article  CAS  PubMed  Google Scholar 

  • Esedafe WK, Fagade EO, Umaru FF, Akinwotu O (2015) Bacterial degradation of the polycyclic aromatic hydrocarbon (PAH) -fraction of refinery effluent. Int J Environ Bioremediation Biodegradation 3(1):23–27

    CAS  Google Scholar 

  • Evangelou MW, Ebel M, Schaeffer A (2006) Evaluation of the effect of small organic acids on phytoextraction of Cu and Pb from soil with tobacco Nicotiana tabacum. Chemosphere 63(6):996–1004

    Article  CAS  PubMed  Google Scholar 

  • Fasim F, Ahmed N, Parsons R, Gadd GM (2002) Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiol Lett 213(1):1–6

    Article  CAS  PubMed  Google Scholar 

  • Fester T, Giebler J, Wick LY, Schlosser D, Kästner M (2014) Plant–microbe interactions as drivers of ecosystem functions relevant for the biodegradation of organic contaminants. Curr Opin Biotechnol 27:168–175

    Article  CAS  PubMed  Google Scholar 

  • Fomina M, Alexander I, Hillier S, Gadd G (2004) Zinc phosphate and pyromorphite solubilization by soil plant-symbiotic fungi. Geomicrobiol J 21(5):351–366

    Article  CAS  Google Scholar 

  • Gadd GM (2004) Microbial influence on metal mobility and application for bioremediation. Geoderma 122(2):109–119

    Article  CAS  Google Scholar 

  • Gadkar V, Rillig MC (2006) The arbuscular mycorrhizal fungal protein glomalin is a putative homolog of heat shock protein 60. FEMS Microbiol Lett 263(1):93–101

    Article  CAS  PubMed  Google Scholar 

  • Gamalero E, Trotta A, Massa N, Copetta A, Martinotti MG, Berta G (2004) Impact of two fluorescent pseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth, root architecture and P acquisition. Mycorrhiza 14(3):185–192

    Article  PubMed  Google Scholar 

  • Gao Y, Cheng Z, Ling W, Huang J (2010) Arbuscular mycorrhizal fungal hyphae contribute to the uptake of polycyclic aromatic hydrocarbons by plant roots. Bioresour Technol 101(18):6895–6901

    Article  CAS  PubMed  Google Scholar 

  • Gerhardt KE, Huang X-D, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176(1):20–30

    Article  CAS  Google Scholar 

  • Glick BR (2004) Bacterial ACC deaminase and the alleviation of plant stress. Adv Appl Microbiol 56:291–312

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28(3):367–374

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Bashan Y (1997) Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of phytopathogens. Biotechnol Adv 15(2):353–378

    Article  CAS  PubMed  Google Scholar 

  • Goh H-H, Sloan J, Malinowski R, Fleming A (2014) Variable expansin expression in Arabidopsis leads to different growth responses. J Plant Physiol 171(3):329–339

    Article  CAS  PubMed  Google Scholar 

  • Goicoechea N, Antolin M, Sánchez-Díaz M (1997) Gas exchange is related to the hormone balance in mycorrhizal or nitrogen-fixing alfalfa subjected to drought. Physiol Plant 100(4):989–997

    Article  CAS  Google Scholar 

  • González-Teuber M, Pozo MJ, Muck A, Svatos A, Adame-Alvarez RM, Heil M (2010) Glucanases and chitinases as causal agents in the protection of Acacia extrafloral nectar from infestation by phytopathogens. Plant Physiol 152(3):1705–1715

    Article  CAS  PubMed  Google Scholar 

  • Goodell B, Jellison J, Liu J, Daniel G, Paszczynski A, Fekete F et al (1997) Low molecular weight chelators and phenolic compounds isolated from wood decay fungi and their role in the fungal biodegradation of wood. J Biotechnol 53(2):133–162

    Article  CAS  Google Scholar 

  • Guo W, Zhao R, Zhao W, Fu R, Guo J, Bi N, Zhang J (2013) Effects of arbuscular mycorrhizal fungi on maize (Zea mays L.) and sorghum (Sorghum bicolor L. Moench) grown in rare earth elements of mine tailings. Appl Soil Ecol 72:85–92

    Article  Google Scholar 

  • Habibzadeh Y, Pirzad A, Zardashti MR, Jalilian J, Eini O (2013) Effects of arbuscular mycorrhizal fungi on seed and protein yield under water-deficit stress in mung bean. Agron J 105(1):79–84

    Article  CAS  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species—opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2(1):43–56

    Article  CAS  PubMed  Google Scholar 

  • Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9(3):177–192

    Article  CAS  PubMed  Google Scholar 

  • Hartmann A, Schmid M, Van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321(1–2):235–257

    Article  CAS  Google Scholar 

  • Hashem A, Abd_Allah EF, Alqarawi AA, Aldubise A, Egamberdieva D (2015) Arbuscular mycorrhizal fungi enhances salinity tolerance of Panicum turgidum Forssk by altering photosynthetic and antioxidant pathways. J Plant Interact 10(1):230–242

    Article  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60(4):579–598

    Article  Google Scholar 

  • Henke C, Jung E-M, Kothe E (2015) Hartig’ net formation of Tricholoma vaccinum-spruce ectomycorrhiza in hydroponic cultures. Environ Sci Pollut Res 22(24):19394–19399

    Article  CAS  Google Scholar 

  • Hodge A, Storer K (2015) Arbuscular mycorrhiza and nitrogen: implications for individual plants through to ecosystems. Plant Soil 386(1–2):1–19

    Article  CAS  Google Scholar 

  • Hofmann NR (2013) Volatile organic compounds: a bacterial contribution to plant sulfur nutrition. Am Soc Plant Biologist 25:2381

    CAS  Google Scholar 

  • Jaiti F, Meddich A, El Hadrami I (2007) Effectiveness of arbuscular mycorrhizal fungi in the protection of date palm (Phoenix dactylifera L.) against bayoud disease. Physiol Mol Plant Pathol 71(4):166–173

    Article  CAS  Google Scholar 

  • Jalloh A, Roy-Macauley H, Sereme P (2012) Major agro-ecosystems of West and Central Africa: brief description, species richness, management, environmental limitations and concerns. Agric Ecosyst Environ 157:5–16

    Article  Google Scholar 

  • Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea J-M (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37(1):1–16

    Google Scholar 

  • Jianfeng H, Xiangui L, Rui Y, Jiang Q, Yufang S (2009) Effects of arbuscular mycorrhizal fungi inoculation on arsenic accumulation by tobacco (Nicotiana tabacum L.). J Environ Sci 21(9):1214–1220

    Article  CAS  Google Scholar 

  • Johansson EM, Fransson PM, Finlay RD, van Hees PA (2008) Quantitative analysis of exudates from soil-living basidiomycetes in pure culture as a response to lead, cadmium and arsenic stress. Soil Biol Biochem 40(9):2225–2236

    Article  CAS  Google Scholar 

  • Joner EJ, Leyval C, Colpaert JV (2006) Ectomycorrhizas impede phytoremediation of polycyclic aromatic hydrocarbons (PAHs) both within and beyond the rhizosphere. Environ Pollut 142(1):34–38

    Article  CAS  PubMed  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444(7117):323–329

    Article  CAS  PubMed  Google Scholar 

  • Jones D, Edwards A (1998) Influence of sorption on the biological utilization of two simple carbon substrates. Soil Biol Biochem 30(14):1895–1902

    Article  CAS  Google Scholar 

  • Jones D, Dennis P, Owen A, Van Hees P (2003) Organic acid behavior in soils–misconceptions and knowledge gaps. Plant Soil 248(1–2):31–41

    Article  CAS  Google Scholar 

  • Juwarkar AA, Jambhulkar HP (2008) Phytoremediation of coal mine spoil dump through integrated biotechnological approach. Bioresour Technol 99(11):4732–4741

    Article  CAS  PubMed  Google Scholar 

  • Kai M, Haustein M, Molina F, Petri A, Scholz B, Piechulla B (2009) Bacterial volatiles and their action potential. Appl Microbiol Biotechnol 81(6):1001–1012

    Article  CAS  PubMed  Google Scholar 

  • Kaymak HC (2010) Potential of PGPR in agricultural innovations. In: Maheshwari DK (ed) Plant growth and health promoting bacteria, Springer, Berlin, pp 45–79

    Google Scholar 

  • Khalafallah AA, Abo-Ghalia HH (2008) Effect of arbuscular mycorrhizal fungi on the metabolic products and activity of antioxidant system in wheat plants subjected to short-term water stress, followed by recovery at different growth stages. J Appl Sci Res 4(5):559–569

    CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7(1):1–19

    Article  CAS  Google Scholar 

  • Khaosaad T, Garcia-Garrido J, Steinkellner S, Vierheilig H (2007) Take-all disease is systemically reduced in roots of mycorrhizal barley plants. Soil Biol Biochem 39(3):727–734

    Article  CAS  Google Scholar 

  • Kim S, Lim H, Lee I (2010) Enhanced heavy metal phytoextraction by Echinochloa crus-galli using root exudates. J Biosci Bioeng 109(1):47–50

    Article  CAS  PubMed  Google Scholar 

  • Kiss T, Farkas E (1998) Metal-binding ability of desferrioxamine B. J Incl Phenom Mol Recognit Chem 32(2–3):385–403

    Article  CAS  Google Scholar 

  • Kletzin A (2007) Metabolism of inorganic sulfur compounds in archaea. In: Archaea: evolution, physiology, and molecular biology, pp 261–274

    Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7(2):39–44

    Article  Google Scholar 

  • Krapp A (2015) Plant nitrogen assimilation and its regulation: a complex puzzle with missing pieces. Curr Opin Plant Biol 25:115–122

    Article  CAS  PubMed  Google Scholar 

  • Krupa P, Kozdrój J (2007) Ectomycorrhizal fungi and associated bacteria provide protection against heavy metals in inoculated pine (Pinus sylvestris L.) seedlings. Water Air Soil Pollut 182(1–4):83–90

    Article  CAS  Google Scholar 

  • Kuffner M, Puschenreiter M, Wieshammer G, Gorfer M, Sessitsch A (2008) Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant Soil 304(1–2):35–44

    Article  CAS  Google Scholar 

  • Kuffner, M., De Maria, S., Puschenreiter, M., Fallmann, K., Wieshammer, G., Gorfer, M., Sessitsch, A. (2010). Culturable bacteria from Zn-and Cd-accumulating Salix caprea with differential effects on plant growth and heavy metal availability. J Appl Microbiol, 108(4), 1471–1484

    Article  CAS  PubMed  Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJ (2004) Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant-Microbe Interact 17(1):6–15

    Article  CAS  PubMed  Google Scholar 

  • Kumar RN, Nagendran R (2009) Fractionation behavior of heavy metals in soil during bioleaching with Acidithiobacillus thiooxidans. J Hazard Mater 169(1):1119–1126

    Article  CAS  Google Scholar 

  • Kurepin LV, Park JM, Lazarovits G, Bernards MA (2015) Burkholderia phytofirmans-induced shoot and root growth promotion is associated with endogenous changes in plant growth hormone levels. Plant Growth Regul 75(1):199–207

    Article  CAS  Google Scholar 

  • Lau JA, Lennon JT (2011) Evolutionary ecology of plant–microbe interactions: soil microbial structure alters selection on plant traits. New Phytol 192(1):215–224

    Article  PubMed  Google Scholar 

  • Lebeau T, Braud A, Jézéquel K (2008) Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review. Environ Pollut 153(3):497–522

    Article  CAS  PubMed  Google Scholar 

  • Li W, Ye Z, Wong M (2010) Metal mobilization and production of short-chain organic acids by rhizosphere bacteria associated with a Cd/Zn hyperaccumulating plant, Sedum alfredii. Plant Soil 326(1–2):453–467

    Article  CAS  Google Scholar 

  • Li H-Y, Wei D-Q, Shen M, Zhou Z-P (2012) Endophytes and their role in phytoremediation. Fungal Divers 54(1):11–18. https://doi.org/10.1007/s13225-012-0165-x

    Article  Google Scholar 

  • Linderman RG (1992) Vesicular-arbuscular mycorrhizae and soil microbial interactions. In: Mycorrhizae in sustainable agriculture (mycorrhizaeinsu). American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Madison, pp 45–70

    Google Scholar 

  • Lioussanne L, Jolicoeur M, St-Arnaud M (2009) Role of the modification in root exudation induced by arbuscular mycorrhizal colonization on the intraradical growth of Phytophthora nicotianae in tomato. Mycorrhiza 19(6):443–448

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Li S, Islam E, Chen JR, Wu JS, Ye ZQ et al (2015a) Lead accumulation and tolerance of Moso bamboo (Phyllostachys pubescens) seedlings: applications of phytoremediation. J Zhejiang Univ Sci B 16(2):123–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Yuan M, Tan S, Yang X, Lan Z, Jiang Q et al (2015b) Enhancement of arbuscular mycorrhizal fungus (Glomus versiforme) on the growth and Cd uptake by Cd-hyperaccumulator Solanum nigrum. Appl Soil Ecol 89:44–49

    Article  Google Scholar 

  • Loh J, Carlson RW, York WS, Stacey G (2002) Bradyoxetin, a unique chemical signal involved in symbiotic gene regulation. Proc Natl Acad Sci 99(22):14446–14451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Bucio J, Nieto-Jacobo MF, Ramırez-Rodrıguez V, Herrera-Estrella L (2000) Organic acid metabolism in plants: from adaptive physiology to transgenic varieties for cultivation in extreme soils. Plant Sci 160(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Luo Q, Sun L, Hu X, Zhou R (2014a) The variation of root exudates from the hyperaccumulator Sedum alfredii under cadmium stress: metabonomics analysis. PLoS One 9(12):e115581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo Z-B, Wu C, Zhang C, Li H, Lipka U, Polle A (2014b) The role of ectomycorrhizas in heavy metal stress tolerance of host plants. Environ Exp Bot 108:47–62

    Article  CAS  Google Scholar 

  • Ma Y, Prasad M, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29(2):248–258

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Oliveira RS, Wu L, Luo Y, Rajkumar M, Rocha I, Freitas H (2015) Inoculation with metal-mobilizing plant-growth-promoting rhizobacterium Bacillus sp. SC2b and its role in rhizoremediation. J Toxic Environ Health A 78(13–14):931–944

    Article  CAS  Google Scholar 

  • Ma Y, Oliveira RS, Freitas H, Zhang C (2016) Biochemical and molecular mechanisms of plant-microbe-metal interactions: relevance for phytoremediation. Front Plant Sci 7:19

    Google Scholar 

  • Machuca A, Pereira G, Aguiar A, Milagres A (2007) Metal-chelating compounds produced by ectomycorrhizal fungi collected from pine plantations. Lett Appl Microbiol 44(1):7–12

    Article  CAS  PubMed  Google Scholar 

  • Madhaiyan M, Poonguzhali S, Sa T (2007) Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere 69(2):220–228

    Article  CAS  PubMed  Google Scholar 

  • Maillet F, Poinsot V, Andre O, Puech-Pagès V, Haouy A, Gueunier M et al (2011) Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469(7328):58–63

    Article  CAS  PubMed  Google Scholar 

  • Mandal SM, Chakraborty D, Dey S (2010) Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal Behav 5(4):359–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mani D, Kumar C (2014) Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. Int J Environ Sci Technol 11(3):843–872

    Article  CAS  Google Scholar 

  • Martínez-Viveros O, Jorquera MA, Crowley DE, Gajardo G, Mora ML (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10(3):293–319

    Article  Google Scholar 

  • Martino E, Perotto S, Parsons R, Gadd GM (2003) Solubilization of insoluble inorganic zinc compounds by ericoid mycorrhizal fungi derived from heavy metal polluted sites. Soil Biol Biochem 35(1):133–141

    Article  CAS  Google Scholar 

  • McCutcheon S, Schnoor J, Wolfe N, Carreira L (1995) Phytoremediation of organic and nutrient contaminants. Environ Sci Technol 29(7):318A–323A

    Article  PubMed  Google Scholar 

  • McMichael A, Butler C, Dixon J (2015) Climate change, food systems and population health risks in their eco-social context. Public Health 129(10):1361–1368

    Article  CAS  PubMed  Google Scholar 

  • Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3(2):153–162

    Article  CAS  PubMed  Google Scholar 

  • Meding SM, Zasoski RJ (2008) Hyphal-mediated transfer of nitrate, arsenic, cesium, rubidium, and strontium between arbuscular mycorrhizal forbs and grasses from a California oak woodland. Soil Biol Biochem 40(1):126–134

    Article  CAS  Google Scholar 

  • Meier S, Azcón R, Cartes P, Borie F, Cornejo P (2011) Alleviation of Cu toxicity in Oenothera picensis by copper-adapted arbuscular mycorrhizal fungi and treated agrowaste residue. Appl Soil Ecol 48(2):117–124

    Article  Google Scholar 

  • Meier S, Alvear M, Borie F, Aguilera P, Ginocchio R, Cornejo P (2012a) Influence of copper on root exudate patterns in some metallophytes and agricultural plants. Ecotoxicol Environ Saf 75:8–15

    Article  CAS  PubMed  Google Scholar 

  • Meier S, Borie F, Bolan N, Cornejo P (2012b) Phytoremediation of metal-polluted soils by arbuscular mycorrhizal fungi. Crit Rev Environ Sci Technol 42(7):741–775

    Article  CAS  Google Scholar 

  • Miransari M (2010) Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Plant Biol 12(4):563–569

    CAS  PubMed  Google Scholar 

  • Miransari M (2011) Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv 29(6):645–653

    Google Scholar 

  • Mishra A, Malik A (2013) Recent advances in microbial metal bioaccumulation. Crit Rev Environ Sci Technol 43(11):1162–1222

    Article  CAS  Google Scholar 

  • Mulligan CN, Galvez-Cloutier R (2003) Bioremediation of metal contamination. Environ Monit Assess 84(1–2):45–60

    Article  CAS  PubMed  Google Scholar 

  • Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32(2):429–448

    Article  PubMed  Google Scholar 

  • Najafi A, Ardakani MR, Rejali F, Sajedi N (2012) Response of winter barley to co-inoculation with Azotobacter and Mycorrhiza fungi influenced by plant growth promoting rhizobacteria. Ann Biol Res 3:4002–4006

    CAS  Google Scholar 

  • Navarro CA, von Bernath D, Jerez CA (2013) Heavy metal resistance strategies of acidophilic bacteria and their acquisition: importance for biomining and bioremediation. Biol Res 46(4):363–371

    Article  PubMed  Google Scholar 

  • Neilands J (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270(45):26723–26726

    Article  CAS  PubMed  Google Scholar 

  • Neubauer U, Furrer G, Kayser A, Schulin R (2000) Siderophores, NTA, and citrate: potential soil amendments to enhance heavy metal mobility in phytoremediation. Int J Phytoremediation 2(4):353–368

    Article  CAS  Google Scholar 

  • Neumann G, Römheld V (1999) Root excretion of carboxylic acids and protons in phosphorus-deficient plants. Plant Soil 211(1):121–130

    Article  CAS  Google Scholar 

  • Newman M-A, Sundelin T, Nielsen JT, Erbs G (2013) MAMP (microbe-associated molecular pattern) triggered immunity in plants. Front Plant Sci 4:139

    Article  PubMed  PubMed Central  Google Scholar 

  • Oláh B, Brière C, Bécard G, Dénarié J, Gough C (2005) Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway. Plant J 44(2):195–207

    Article  CAS  PubMed  Google Scholar 

  • OrÅ‚owska E, PrzybyÅ‚owicz W, Orlowski D, Mongwaketsi NP, Turnau K, Mesjasz-PrzybyÅ‚owicz J (2013) Mycorrhizal colonization affects the elemental distribution in roots of Ni-hyperaccumulator Berkheya coddii Roessler. Environ Pollut 175:100–109

    Article  CAS  PubMed  Google Scholar 

  • Ortiz N, Armada E, Duque E, Roldán A, Azcón R (2015) Contribution of arbuscular mycorrhizal fungi and/or bacteria to enhancing plant drought tolerance under natural soil conditions: effectiveness of autochthonous or allochthonous strains. J Plant Physiol 174:87–96

    Article  CAS  PubMed  Google Scholar 

  • Ortíz-Castro R, Contreras-Cornejo HA, Macías-Rodríguez L, López-Bucio J (2009) The role of microbial signals in plant growth and development. Plant Signal Behav 4(8):701–712

    Article  PubMed  PubMed Central  Google Scholar 

  • Pathak A, Dastidar M, Sreekrishnan T (2009) Bioleaching of heavy metals from sewage sludge: a review. J Environ Manag 90(8):2343–2353

    Article  CAS  Google Scholar 

  • Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68(8):3795–3801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Esteban J, Escolástico C, Moliner A, Masaguer A (2013) Chemical speciation and mobilization of copper and zinc in naturally contaminated mine soils with citric and tartaric acids. Chemosphere 90(2):276–283

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Montaño F, Guasch-Vidal B, González-Barroso S, López-Baena FJ, Cubo T, Ollero FJ et al (2011) Nodulation-gene-inducing flavonoids increase overall production of autoinducers and expression of N-acyl homoserine lactone synthesis genes in rhizobia. Res Microbiol 162(7):715–723

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Montaño F, Jiménez-Guerrero I, Sánchez-Matamoros RC, López-Baena FJ, Ollero FJ, Rodríguez-Carvajal MA et al (2013) Rice and bean AHL-mimic quorum-sensing signals specifically interfere with the capacity to form biofilms by plant-associated bacteria. Res Microbiol 164(7):749–760

    Article  CAS  PubMed  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  PubMed  Google Scholar 

  • Prasad R, Kumar M, Varma A (2015) Role of PGPR in soil fertility and plant health. In: Egamberdieva D, Shrivastava S, Varma A (eds) Plant Growth-Promoting Rhizobacteria (PGPR) and medicinal plants. Springer International Publishing, Switzerland, pp 247–260

    Google Scholar 

  • Prasad R, Bhola D, Akdi K, Cruz C, Sairam KVSS, Tuteja N, Varma A (2017) Introduction to mycorrhiza: historical development. In: Varma A, Prasad R, Tuteja N (eds) Mycorrhiza. Springer International Publishing AG, pp 1–7

    Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28(3):142–149

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar M, Sandhya S, Prasad M, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30(6):1562–1574

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar M, Prasad MNV, Swaminathan S, Freitas H (2013) Climate change driven plant–metal–microbe interactions. Environ Int 53:74–86

    Article  CAS  PubMed  Google Scholar 

  • Rashid MI, Mujawar LH, Shahzad T, Almeelbi T, Ismail IM, Oves M (2016) Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol Res 183:26–41

    Article  CAS  PubMed  Google Scholar 

  • Ren D, Sims JJ, Wood TK (2001) Inhibition of biofilm formation and swarming of Escherichia coli by (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2 (5H)-furanone. Environ Microbiol 3(11):731–736

    Article  CAS  PubMed  Google Scholar 

  • Richardson AE, Barea J-M, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321(1–2):305–339

    Article  CAS  Google Scholar 

  • Rillig MC, Maestre FT, Lamit LJ (2003) Microsite differences in fungal hyphal length, glomalin, and soil aggregate stability in semiarid Mediterranean steppes. Soil Biol Biochem 35(9):1257–1260

    Article  CAS  Google Scholar 

  • Rudrappa T, Czymmek KJ, Paré PW, Bais HP (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148(3):1547–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruíz-Sánchez M, Armada E, Muñoz Y, de Salamone IEG, Aroca R, Ruíz-Lozano JM, Azcón R (2011) Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under well-watered and drought conditions. J Plant Physiol 168(10):1031–1037

    Article  CAS  PubMed  Google Scholar 

  • Ryu C-M, Farag MA, Hu C-H, Reddy MS, Kloepper JW, Paré PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134(3):1017–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saharan B, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 21(1):30

    Google Scholar 

  • Sandermann H Jr (1994) Higher plant metabolism of xenobiotics: the ‘green liver’concept. Pharmacogenet Genomics 4(5):225–241

    Article  CAS  Google Scholar 

  • Saravanan V, Madhaiyan M, Thangaraju M (2007) Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere 66(9):1794–1798

    Google Scholar 

  • Scervino JM, Ponce MA, Erra-Bassells R, Vierheilig H, Ocampo JA, Godeas A (2005) Flavonoids exhibit fungal species and genus specific effects on the presymbiotic growth of Gigaspora and Glomus. Mycol Res 109(7):789–794

    Article  CAS  PubMed  Google Scholar 

  • Schmidt W (1999) Mechanisms and regulation of reduction-based iron uptake in plants. New Phytol 141(1):1–26

    Article  CAS  Google Scholar 

  • Schulz S, Dickschat JS (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24(4):814–842

    Article  CAS  PubMed  Google Scholar 

  • Seeger EM, Reiche N, Kuschk P, Borsdorf H, Kaestner M (2011) Performance evaluation using a three compartment mass balance for the removal of volatile organic compounds in pilot scale constructed wetlands. Environ Sci Technol 45(19):8467–8474

    Article  CAS  PubMed  Google Scholar 

  • Sennoi R, Singkham N, Jogloy S, Boonlue S, Saksirirat W, Kesmala T, Patanothai A (2013) Biological control of southern stem rot caused by Sclerotium rolfsii using Trichoderma harzianum and arbuscular mycorrhizal fungi on Jerusalem artichoke (Helianthus tuberosus L.). Crop Prot 54:148–153

    Article  Google Scholar 

  • Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K, Puschenreiter M (2013) The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem 60:182–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma A, Johri B, Sharma A, Glick B (2003) Plant growth-promoting bacterium Pseudomonas sp. strain GRP 3 influences iron acquisition in mung bean (Vigna radiata L. Wilczek). Soil Biol Biochem 35(7):887–894

    Article  CAS  Google Scholar 

  • Sharma S, Prasad R, Varma A, Sharma AK (2017) Glycoprotein associated with Funneliformis coronatum, Gigaspora margarita and Acaulospora scrobiculata suppress the plant pathogens in vitro. Asian J Plant Pathol. https://doi.org/10.3923/ajppaj.2017

  • Sheng X, He L, Wang Q, Ye H, Jiang C (2008) Effects of inoculation of biosurfactant-producing Bacillus sp. J119 on plant growth and cadmium uptake in a cadmium-amended soil. J Hazard Mater 155(1):17–22

    Article  CAS  PubMed  Google Scholar 

  • Shi J-Y, Lin H-R, Yuan X-F, Chen X-C, Shen C-F, Chen Y-X (2011) Enhancement of copper availability and microbial community changes in rice rhizospheres affected by sulfur. Molecules 16(2):1409–1417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shirmardi M, Savaghebi GR, Khavazi K, Akbarzadeh A, Farahbakhsh M, Rejali F, Sadat A (2010) Effect of microbial inoculants on uptake of nutrient elements in two cultivars of sunflower (Helianthus annuus L.) in saline soils. Notulae Sci Biol 2(3):57

    Article  CAS  Google Scholar 

  • Siebers M, Brands M, Wewer V, Duan Y, Hölzl G, Dörmann P (2016) Lipids in plant–microbe interactions. Biochim Biophys Acta (BBA) – Mol Cell Biol Lipids 1861(9 Part B):1379–1395

    Article  CAS  Google Scholar 

  • Singh JS (2015) Microbes: the chief ecological engineers in reinstating equilibrium in degraded ecosystems. Agric Ecosyst Environ 203:80–82

    Article  Google Scholar 

  • Singh JS, Abhilash P, Gupta VK (2016) Agriculturally important microbes in sustainable food production. Trends Biotechnol 34(10):773

    Article  CAS  Google Scholar 

  • Sinha S, Mukherjee SK (2008) Cadmium–induced siderophore production by a high Cd-resistant bacterial strain relieved Cd toxicity in plants through root colonization. Curr Microbiol 56(1):55–60

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Read DJ (2010) Mycorrhizal symbiosis. Academic, Oxford

    Google Scholar 

  • Smith SE, Facelli E, Pope S, Smith FA (2010) Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil 326(1–2):3–20

    Article  CAS  Google Scholar 

  • Smith SE, Jakobsen I, Grønlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156(3):1050–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3(4):a001438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spanu PD, Panstruga R (2017) Editorial: biotrophic plant-microbe interactions. Front Plant Sci 8:4

    Article  Google Scholar 

  • Srivastava J, Naraian R, Kalra SJS, Chandra H (2014) Advances in microbial bioremediation and the factors influencing the process. Int J Environ Sci Technol 11(6):1787–1800

    Article  CAS  Google Scholar 

  • Steinkellner S, Lendzemo V, Langer I, Schweiger P, Khaosaad T, Toussaint J-P, Vierheilig H (2007) Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant-fungus interactions. Molecules 12(7):1290–1306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Ling W, Liu J, Zong J (2012) Effects of arbuscular mycorrhizal fungi on the uptake of phenanthrene and pyrene by Alfalfa. J Agro-Environ Sci 31(10):1920–1926

    CAS  Google Scholar 

  • Taghavi S, Barac T, Greenberg B, Borremans B, Vangronsveld J, van der Lelie D (2005) Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. Appl Environ Microbiol 71(12):8500–8505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tank N, Saraf M (2009) Enhancement of plant growth and decontamination of nickel-spiked soil using PGPR. J Basic Microbiol 49(2):195–204

    Article  CAS  PubMed  Google Scholar 

  • U.S. Department of Health and Human Services, A. f. T. S. a. D. R. A (2015) ATSDR’s substance priority list. Retrieved 5/05/2017 http://www.atsdr.cdc.gov/cercla/07list.html

  • Vacheron J, Desbrosses G, Bouffaud M-L, Touraine B, Prigent-Combaret C (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:356

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Aken B (2008) Transgenic plants for phytoremediation: helping nature to clean up environmental pollution. Trends Biotechnol 26(5):225–227

    Article  CAS  PubMed  Google Scholar 

  • Van Aken B, Yoon JM, Schnoor JL (2004) Biodegradation of nitro-substituted explosives 2, 4, 6-trinitrotoluene, hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine, and octahydro-1, 3, 5, 7-tetranitro-1, 3, 5-tetrazocine by a phytosymbiotic Methylobacterium sp. associated with poplar tissues (Populus deltoides× nigra DN34). Appl Environ Microbiol 70(1):508–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Aken B, Correa PA, Schnoor JL (2010) Phytoremediation of polychlorinated biphenyls: new trends and promises. Environ Sci Technol 44(8):2767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Loon LC (2016) The intelligent behavior of plants. Trends Plant Sci 21(4):286–294

    Article  CAS  PubMed  Google Scholar 

  • Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E, Van der Lelie D, Mench M (2009) Phyto-remediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16:765–794

    Article  CAS  Google Scholar 

  • Vansuyt G, Robin A, Briat J-F, Curie C, Lemanceau P (2007) Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana. Mol Plant-Microbe Interact 20(4):441–447

    Article  CAS  PubMed  Google Scholar 

  • Varnier AL, Sanchez L, Vatsa P, Boudesocque L, Garcia-Brugger A, Rabenoelina F et al (2009) Bacterial rhamnolipids are novel MAMPs conferring resistance to Botrytis cinerea in grapevine. Plant Cell Environ 32(2):178–193

    Article  CAS  PubMed  Google Scholar 

  • Velásquez L, Dussan J (2009) Biosorption and bioaccumulation of heavy metals on dead and living biomass of Bacillus sphaericus. J Hazard Mater 167(1):713–716

    Article  CAS  PubMed  Google Scholar 

  • Venkatesh NM, Vedaraman N (2012) Remediation of soil contaminated with copper using rhamnolipids produced from Pseudomonas aeruginosa MTCC 2297 using waste frying rice bran oil. Ann Microbiol 62(1):85–91

    Article  CAS  Google Scholar 

  • Vijayan R, Palaniappan P, Tongmin S, Elavarasi P, Manoharan N (2013) Rhizobitoxine enhances nodulation by inhibiting ethylene synthesis of Bradyrhizobium elkanii from Lespedeza species: validation by homology modeling and molecular docking study. World J Pharm Pharm Sci 2:4079–4094

    Google Scholar 

  • Vimal SR, Singh JS, Arora NK, Singh S (2017) Soil-plant-microbe interactions in stressed agriculture management: a review. Pedosphere 27(2):177–192

    Article  Google Scholar 

  • Vivas A, Biro B, Ruiz-Lozano J, Barea J, Azcon R (2006) Two bacterial strains isolated from a Zn-polluted soil enhance plant growth and mycorrhizal efficiency under Zn-toxicity. Chemosphere 62(9):1523–1533

    Article  CAS  PubMed  Google Scholar 

  • von Bodman SB, Bauer WD, Coplin DL (2003) Quorum sensing in plant-pathogenic bacteria. Annu Rev Phytopathol 41(1):455–482

    Article  CAS  Google Scholar 

  • von Rad U, Klein I, Dobrev PI, Kottova J, Zazimalova E, Fekete A et al (2008) Response of Arabidopsis thaliana to N-hexanoyl-DL-homoserine-lactone, a bacterial quorum sensing molecule produced in the rhizosphere. Planta 229(1):73–85

    Article  Google Scholar 

  • Vos C, Tesfahun A, Panis B, De Waele D, Elsen A (2012) Arbuscular mycorrhizal fungi induce systemic resistance in tomato against the sedentary nematode Meloidogyne incognita and the migratory nematode Pratylenchus penetrans. Appl Soil Ecol 61:1–6

    Article  Google Scholar 

  • Vymazal J (2011) Plants used in constructed wetlands with horizontal subsurface flow: a review. Hydrobiologia 674(1):133–156

    Article  CAS  Google Scholar 

  • Wong J, Xiang L, Gu X, Zhou L (2004) Bioleaching of heavy metals from anaerobically digested sewage sludge using FeS 2 as an energy source. Chemosphere 55(1):101–107

    Article  CAS  PubMed  Google Scholar 

  • Xie H, Pasternak J, Glick BR (1996) Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2 that overproduce indoleacetic acid. Curr Microbiol 32(2):67–71

    Article  CAS  Google Scholar 

  • Xiong K, Fuhrmann J (1996) Comparison of rhizobitoxine-induced inhibition of β-cystathionase from different bradyrhizobia and soybean genotypes. Plant Soil 186(1):53–61

    Article  CAS  Google Scholar 

  • Younesi O, Moradi A, Namdari A (2013) Influence of arbuscular mycorrhiza on osmotic adjustment compounds and antioxidant enzyme activity in nodules of salt-stressed soybean (Glycine max). Acta Agric Slov 101(2):219

    Article  Google Scholar 

  • Yuan S, Xi Z, Jiang Y, Wan J, Wu C, Zheng Z, Lu X (2007) Desorption of copper and cadmium from soils enhanced by organic acids. Chemosphere 68(7):1289–1297

    Article  CAS  PubMed  Google Scholar 

  • Yuan S, Li M, Fang Z, Liu Y, Shi W, Pan B et al (2016) Biological control of tobacco bacterial wilt using Trichoderma harzianum amended bioorganic fertilizer and the arbuscular mycorrhizal fungi Glomus mosseae. Biol Control 92:164–171

    Article  Google Scholar 

  • Zafar S, Aqil F, Ahmad I (2007) Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresour Technol 98(13):2557–2561

    Article  CAS  PubMed  Google Scholar 

  • Zhang LH, Dong YH (2004) Quorum sensing and signal interference: diverse implications. Mol Microbiol 53(6):1563–1571

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Subramanian S, Zhang Y, Yu O (2007) Flavone synthases from Medicago truncatula are flavanone-2-hydroxylases and are important for nodulation. Plant Physiol 144(2):741–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao F, Hamon R, McLaughlin MJ (2001) Root exudates of the hyperaccumulator Thlaspi caerulescens do not enhance metal mobilization. New Phytol 151(3):613–620

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23(4):283–333

    Article  CAS  PubMed  Google Scholar 

  • Zhipeng W, Weidong W, Shenglu Z, Shaohua W (2016) Mycorrhizal inoculation affects Pb and Cd accumulation and translocation in Pakchoi (Brassica chinensis L.). Pedosphere 26(1):13–26

    Article  Google Scholar 

  • Zikmundova M, Drandarov K, Bigler L, Hesse M, Werner C (2002) Biotransformation of 2-benzoxazolinone and 2-hydroxy-1, 4-benzoxazin-3-one by endophytic fungi isolated from Aphelandra tetragona. Appl Environ Microbiol 68(10):4863–4870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zong K, Huang J, Nara K, Chen Y, Shen Z, Lian C (2015) Inoculation of ectomycorrhizal fungi contributes to the survival of tree seedlings in a copper mine tailing. J For Res 20(6):493–500

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Umaru, F.F., Owuama, C.I. (2018). Application of Plant-Microbe Interactions in Contaminated Agroecosystem Management. In: Kumar, V., Kumar, M., Prasad, R. (eds) Phytobiont and Ecosystem Restitution. Springer, Singapore. https://doi.org/10.1007/978-981-13-1187-1_4

Download citation

Publish with us

Policies and ethics