Advertisement

# Erdélyi-Kober Fractional Integrals in the Real Scalar Variable Case

Chapter
• 345 Downloads
Part of the SpringerBriefs in Mathematical Physics book series (BRIEFSMAPHY, volume 31)

## Abstract

This monograph will examine a new definition for fractional integrals in terms of the distributions of products and ratios of statistically independently distributed positive scalar random variables or in terms of Mellin convolutions of products and ratios in the case of real scalar variables. The idea will be generalized to cover real multivariate cases as well as to real matrix-variate cases. In the matrix-variate case, M-convolutions of products and ratios will be used to extend the ideas. Then we will give a definition for the case of real-valued scalar functions of several real matrices. Then we examine fractional calculus in the complex domain. Here p × p Hermitian positive definite matrices and real-valued scalar functions of these matrices are examined to define and evaluate fractional integrals. It is shown that one can define all types of fractional integrals and fractional derivatives through Erdélyi-Kober fractional integral operators and statistical distribution theory. Then differential operators will be defined by using the following argument. If Dα denotes fractional integral of order α then Dα will be called fractional derivative of order α. For n = 1, 2, …, Dn denotes the integer order derivatives. For $$\Re (n-\alpha )>0$$ we can define Dα = DnD−(nα) or Dα = D−(nα)Dn. The first will be fractional derivative of order α in the Riemann-Liouville sense and the latter in the Caputo sense. In the present chapter we concentrate on fractional integrals in the real scalar cases.

## References

1. 1.
G. Calcagni, Geometry of fractional spaces. Adv. Theor. Math. Phys. 16, 549–644 (2012)
2. 2.
R. Gorenflo, F. Mainardi, Fractional calculus integral and differential equations of fractional order, in Fractal and Fractional Calculus in Continuum Mechanics, ed. by A. Carpinteri, F. Mainardi (Springer, Wien and New York, 1997), pp. 223–276
3. 3.
R. Herrmann, Towards a geometric interpretation of generalized fractional integrals – Erdélyi-Kober type integrals on R(N) as an example. Fract. Calc. Appl. Anal. 17(2), 361–370 (2014)
4. 4.
R.Hilfer (ed.), Applications of Fractional Calculus in Physics (World Scientific, Singapore, 2000)
5. 5.
A.A. Kilbas, J.J. Trujillo, Computation of fractional integral via functions of hypergeometric and Bessel type. J. Comput. Appl. Math. 118(1–2), 223–239 (2000)
6. 6.
V. Kiryakova, Generalized Fractional Calculus and Applications, Pitman Res Notes Math 301, Longman Scientific & Technical: Harlow, Co-published with (Wiley, New York, 1994)Google Scholar
7. 7.
V. Kiryakova, Y. Luchko, Riemann-Liouville and Caputo type multiple Erdélyi-Kober operators. Centr. Eur. J. Phys. 11(10), 1314–1336 (2013)Google Scholar
8. 8.
D. Kumar, P-transform. Integral Transforms Spec. Funct. 22(8), 603–616 (2011)
9. 9.
D. Kumar, H.J. Haubold, On extended thermonuclear functions through pathway model. Adv. Space Res. 45, 698–708 (2010)
10. 10.
D. Kumar, A.A. Kilbas, Fractional calculus of P-transform. Fract. Calc. Appl. Anal. 13(3), 309–328 (2010)
11. 11.
Y. Luchko, Operational rules for a mixed operator of the Erdélyi-Kober type. Fract. Calc. Appl. Analysis 7(3), 339–364 (2004)
12. 12.
Y. Luchko, J.J. Trujillo, Caputo-type modification of the Erdélyi-Kober fractional derivative. Fract. Calc. Appl. Anal. 10(3), 250–267 (2007)
13. 13.
F. Mainardi, Yu. Luchko, G. Pagnini, The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4, 153–192 (2001)
14. 14.
A.M. Mathai, Pathway to matrix-variate gamma and normal densities. Linear Algebra Appl. 396, 317–328 (2005)
15. 15.
A.M. Mathai, Generalized Krätzel integral and associated statistical densities. Int. J. Math. Anal. 6(51), 2501–2510 (2012)
16. 16.
A.M. Mathai, Fractional integral operators in the complex matrix-variate case. Linear Algebra Appl. 439, 2901–2913 (2013)
17. 17.
A.M. Mathai, Fractional integral operators involving many matrix variables. Linear Algebra Appl. 446, 196–215 (2014)
18. 18.
A.M. Mathai, H.J. Haubold, Special Functions for Applied Scientists (Springer, New York, 2008)
19. 19.
A.M. Mathai, H.J. Haubold, Stochastic processes via pathway model. Entropy 17, 2642–2654 (2015)
20. 20.
A.M. Mathai, S.B. Provost, T. Hayakawa, Bilinear Forms and Zonal Polynomials. Lecture Notes in Statistics (Springer, New York, 1995)Google Scholar
21. 21.
A.M. Mathai, R.K. Saxena, H.J. Haubold, The H-function: Theory and Applications (Springer, New York, 2010)
22. 22.
R. Metzler, W.G. Glöckle, T.F. Nonnenmacher, Fractional model equation for anomalous diffusion. Physica A 211, 13–24 (1994)
23. 23.
K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (Wiley, New York, 1993)
24. 24.
K. Nishimoto (1984/1987/1989/1991/1996) Fractional Calculus, vols. 1–5 (Descartes Press, Koriyama, 1996)Google Scholar
25. 25.
K.B. Oldham, J. Spanier, The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order (Academic, New York, 1974)
26. 26.
G. Pagnini, Erdélyi-Kober fractional diffusion. Fract. Calc. Appl. Anal. 15(1), 117–127 (2012)
27. 27.
I. Podlubny, Fractional Differential Equations (Academic, San Diego, 1999)
28. 28.
L. Plociniczak, Approximation of the Erdélyi-Kober operator with application to the time-fractional porous medium equation. SIAM J. Appl. Math. 74(4), 129–1237 (2014)
29. 29.
M. Saigo, A.A. Kilbas, Generalized fractional calculus of the H-function. Fukuoka Univ. Sci. Rep. 29, 31–45 (1999)
30. 30.
I.N. Sneddon, The use in mathematical physics of Erdélyi-Kober operators and of some of their generalizations, in Fractional Calculus and Its Applications, ed. by B. Ross (Springer, New York, 1975)Google Scholar
31. 31.
H.M. Srivastava, R.K. Saxena, Operators of fractional integration and their applications. Appl. Math. Comput. 118, 1–52 (2001)

## Copyright information

© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2018

## Authors and Affiliations

1. 1.Department of Mathematics and StatisticsMcGill UniversityMontrealCanada
2. 2.Office for Outer Space Affairs United NationsViennaAustria