Advertisement

Solar Neutrinos, Diffusion, Entropy, Fractional Calculus

  • A. M. Mathai
  • H. J. Haubold
Chapter
Part of the SpringerBriefs in Mathematical Physics book series (BRIEFSMAPHY, volume 31)

Abstract

The laws of nature are fundamentally random. This Springer Briefs in Mathematical Physics is an attempt to illustrate elements of a research programme in mathematics and statistics applied to selected problems in physics, particularly the relations between solar neutrinos, diffusion, entropy, and fractional calculus as they appear in neutrino astrophysics since the 1970s. The original research programme was published in three monographs [18–20]. An update of this research programme and selected results achieved since the 1970s is contained in Mathai and Haubold [21] and Mathai, Saxena, and Haubold [22]. The research programme connects mathematics and statistics to theoretical physics with the following historical background in mind.

References

  1. 1.
    L. Boltzmann, Weitere Studien ueber das Waermegleichgewicht unter Gasmolekuelen, Wiener Berichte 66, 275–370 (1872), Wissenschaftliche Abhandlungen, Band I, 316–402; English translation: Further studies on the thermal equilibrium of gas molecules, in Kinetic Theory 2, ed. by S.G. Brush (Oxford, Pergamon, 1966), pp. 88–174CrossRefGoogle Scholar
  2. 2.
    L. Boltzmann, Ueber die Beziehung zwischen dem zweiten Hauptsatz der mechanischen Waermetheorie und der Wahrscheinlichkeitsrechnung respektive den Saetzen ueber das Waermegleichgewicht, Wiener Berichte 76, 373–435 (1877); Wissenschaftliche Abhandlungen, Band II, 164–223Google Scholar
  3. 3.
    L. Boltzmann, Bemerkungen ueber einige Probleme der mechanischen Waermetheorie, Wiener Berichte 75, 62–100 (1877); Wissenschaftliche Abhandlungen, Band II, 112–150Google Scholar
  4. 4.
    L. Boltzmann, Entgegnung auf die waermetheoretischen Betrachtungen des Hrn. E. Zermelo, Wiedener Annalen 57, 773–784 (1896); Wissenschaftliche Abhandlungen, Band III, 567–578Google Scholar
  5. 5.
    L. Boltzmann, Zu Hrn. Zermelos Abhandlung ueber die mechanische Erklaerung irreversibler Vorgaenge, Wiedener Annalen 60, 392–398 (1897); Wissenschaftliche Abhandlungen, Band III, 579–586Google Scholar
  6. 6.
    L. Boltzmann, Ueber einen mechanischen Satz Poincares, Wiener Berichte 106, 12–20 (1897); Wissenschaftliche Abhandlungen, Band III, 587–595Google Scholar
  7. 7.
    D. Brockmann, L. Hufnagel, T. Geisel, The scaling laws of human travel. Nature 439, 462–465 (2006).  https://doi.org/10.1038/nature04292 CrossRefGoogle Scholar
  8. 8.
    S.G. Brush, A. Segal, Making 20th Century Science: How Theories Became Knowledge (Oxford University Press, Oxford, 2015)zbMATHGoogle Scholar
  9. 9.
    J.P. Cravens et al., Solar neutrino measurements in Super-Kamiokande-II. Phys. Rev. D 78, 032002, (2008)CrossRefGoogle Scholar
  10. 10.
    A. Eucken, Die Theorie der Strahlung und der Quanten, Verhandlungen auf einer von E. Solvay einberufenen Zusammenkunft (30. Oktober bis 3. November 1911). Mit einem Anhang ueber die Entwicklung der Quantentheorie vom Herbst 1911 bis zum Sommer 1913, Druck und Verlag von Wilhelm Knapp, Halle 1914, p. 95Google Scholar
  11. 11.
    J.A. Formaggio, D.I. Kaiser, M.M. Murskyj, T.E. Weiss, Violation of the Leggett-Garg inequality in neutrino oscillations. Phys. Rev. Lett. 117, 050402 (2017)CrossRefGoogle Scholar
  12. 12.
    H.J. Haubold, R.W. John, On the evaluation of an integral connected with the thermonuclear reaction rate in closed form. Astronomische Nachrichten 299, 225–232 (1978)CrossRefGoogle Scholar
  13. 13.
    H.J. Haubold, E. Gerth, The search for possible time variations in Davis’ measurements of the argon production rate in the solar neutrino experiment. Astronomische Nachrichten 306, 203–211 (1985)CrossRefGoogle Scholar
  14. 14.
    H.J. Haubold, A.M. Mathai, R.K. Saxena, Analysis of solar neutrino data from Super-Kamiokande I and II. Entropy 16, 1414–1425 (2014)CrossRefGoogle Scholar
  15. 15.
    T.S. Kuhn, Black-Body Theory and the Quantum Discontinuity 1894–1912 (Clarendon Press, Oxford, 1978)Google Scholar
  16. 16.
    Z.-W. Liu, S. Lloyd, E.Y. Zhu, H. Zhu, Generalized entanglement entropies of quantum design. arXiv: 1709.04313 [quant-ph] (2017)Google Scholar
  17. 17.
    F. Mainardi, Y. Luchko, G. Pagnini, The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Analysis 4, 153–192 (2001)MathSciNetzbMATHGoogle Scholar
  18. 18.
    A.M. Mathai, P.N. Rathie, Basic Concepts in Information Theory and Statistics: Axiomatic Foundations and Applications (Wiley, New York, 1975)zbMATHGoogle Scholar
  19. 19.
    A.M. Mathai, G. Pederzoli, Characterizations of the Normal Probability Law (Wiley, New York, 1977)zbMATHGoogle Scholar
  20. 20.
    A.M. Mathai, R.K. Saxena, The H-funtion with Applications in Statistics and Other Disciplines (Wiley, New York, 1978)zbMATHGoogle Scholar
  21. 21.
    A.M. Mathai, H.J. Haubold, Modern Problems in Nuclear and Neutrino Astrophysics (Akademie-Verlag, Berlin, 1988)Google Scholar
  22. 22.
    A.M. Mathai, R.K. Saxena, H.J. Haubold, The H-Function: Theory and Applications (Springer, New York, 2010)CrossRefGoogle Scholar
  23. 23.
    S. Naik, H.J. Haubold, On the q-Laplace transform and related special functions. Axioms 5(3), 24 (2016).  https://doi.org/10.3390/axioms5030024
  24. 24.
    I. Oppenheim, K.E. Shuler, G.H. Weiss, Stochastic Processes in Chemical Physics: The Master Equation (MIT Press, Cambridge, 1977)Google Scholar
  25. 25.
    G.D. Orebi Gann, Everything under the Sun: a review of solar neutrinos, in AIP Conference Proceedings 1666, 2015, p. 090003. https://doi.org/10.1063/1.4915568
  26. 26.
    G. Pagnini, Erdelyi-Kober fractional diffusion. Fract. Calc. Appl. Analysis 15, 117–127 (2012)MathSciNetzbMATHGoogle Scholar
  27. 27.
    R. Penrose, Fashion, Faith, and Fantasy in the New Physics of the Universe (Princeton University Press, Princeton and Oxford, 2016)CrossRefGoogle Scholar
  28. 28.
    M. Planck, July 1907 Letter from Planck to Einstein, in The Collected Papers of Albert Einstein, Volume 5: The Swiss Years, Correspondence 1902–1914, ed. by M.J. Klein, A.J. Kox, R. Schulmann (Princeton University Press, Princeton, 1995), Document 47Google Scholar
  29. 29.
    K. Sakurai, Solar Neutrino Problems: How They Were Solved (TERRAPUB, Tokyo, 2014)Google Scholar
  30. 30.
    N. Scafetta, Fractal and Diffusion Entropy Analysis of Time Series: Theory, Concepts, Applications and Computer Codes for Studying Fractal Noises and Levy Walk Signals (VDM Verlag Dr. Mueller, Saarbruecken (Germany), 2010)Google Scholar
  31. 31.
    H.-G. Schoepf, Von Kirchhoff bis Planck, Theorie der Waermestrahlung in historisch-kritischer Darstellung (Akademie-Verlag, Berlin, 1978), pp. 105–127Google Scholar
  32. 32.
    H.-J. Treder, Gravitation und weitreichende schwache Wechselwirkungen bei Neutrino-Feldern (Gedanken zu einer Theorie der solaren Neutrinos). Astronomische Nachrichten 295, 169–184 (1974)CrossRefGoogle Scholar
  33. 33.
    C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 52, 479–487 (1988)MathSciNetCrossRefGoogle Scholar
  34. 34.
    E. Witten, Physics and Geometry, in Proceedings of the International Congress of Mathematicians, Berkeley, 1986 (American Mathematical Society, Providence, 1987), pp. 267–303Google Scholar
  35. 35.
    J. Yoo et al., Search for periodic modulations of the solar neutrino flux in Super-Kamiokande-I. Phys. Rev. D 68, 092002 (2003)CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • A. M. Mathai
    • 1
  • H. J. Haubold
    • 2
  1. 1.Department of Mathematics and StatisticsMcGill UniversityMontrealCanada
  2. 2.Office for Outer Space Affairs United NationsViennaAustria

Personalised recommendations