Skip to main content

Fuzzy Matrix Contractor Based Approach for Localization of Robots

  • Chapter
  • First Online:
Recent Advances in Applications of Computational and Fuzzy Mathematics

Abstract

Localization consists of finding the pose of some robots with respect to its position and orientation. In case of localization of a group of robots over a planar surface, each robot is linked with other robots using constraints that may be considered in term of matrix equations. As such, this chapter deals with the localization of group of robots using angle and distance constraints associated with fuzzy matrix contractors. Matrix contractors based on azimuth–distance and bearing-distance constraints help efficient propagation of fuzzy uncertainties through a group of robots for localization purpose when no absolute frame is present. Finally, various groups of robots have been considered for the verification of proposed contractors viz. azimuth, distance, azimuth–distance, and bearing-distance contractors using Gaussian fuzzy uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Cook, Mobile Robots: Navigation. Control and Remote Sensing (Wiley, Canada, 2011)

    Book  Google Scholar 

  2. L. Jaulin, Mobile Robotics (ISTE Press, London, 2015)

    Google Scholar 

  3. G. Dudek, M. Jenkin, Computational Principles of Mobile Robotics (Cambridge University Press, New York, 2010)

    Book  Google Scholar 

  4. U. Nehmzow, Mobile Robotics: A Practical Introduction (Springer Science and Business Media, London, 2012)

    MATH  Google Scholar 

  5. T. Bailey, H. Durrant-Whyte, Simultaneous localization and mapping (SLAM): Part II. IEEE Robot. Autom. Mag. 13(3), 108–117 (2006)

    Article  Google Scholar 

  6. M. Drumheller, Mobile robot localization using sonar. IEEE Trans. Pattern Anal. Mach. Intell. 2, 325–332 (1987)

    Article  Google Scholar 

  7. D. Meizel, O. Lévêque, L. Jaulin, E. Walter, Initial localization by set inversion. IEEE Trans. Robot. Autom. 18(6), 966–971 (2002)

    Article  Google Scholar 

  8. P.R. Halmos, Naive Set Theory (Springer, New York, 1974)

    Book  Google Scholar 

  9. L.A. Zadeh, Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  Google Scholar 

  10. L. Wang, Y.R. Syau, Fuzzy ϕ-convexity and fuzzy decision making. Comput. Math. Appl. 47(10–11), 1697–1705 (2004)

    Article  MathSciNet  Google Scholar 

  11. M. Hanss, Applied Fuzzy Arithmetic: An Introduction with Engineering Applications (Springer, New York, 2005)

    MATH  Google Scholar 

  12. S. Chakraverty, S. Tapaswini, D. Behera, Fuzzy Arbitrary Order System: Fuzzy Fractional Differential Equations and Applications (Wiley, New Jersey, 2016)

    Book  Google Scholar 

  13. S. Chakraverty, S. Tapaswini, D. Behera, Fuzzy Differential Equations and Applications for Engineers and Scientists (CRC Press, Taylor and Francis Group, Boca Raton, 2016)

    Book  Google Scholar 

  14. A.M. Anile, D. Salvatore, P. Giovanni, Implementing fuzzy arithmetic. Fuzzy Sets Syst. 72(2), 239–250 (1995)

    Article  Google Scholar 

  15. T.L. Lee, C.J. Wu, Fuzzy motion planning of mobile robots in unknown environments. J. Intell. Rob. Syst. 37(2), 177–191 (2003)

    Article  Google Scholar 

  16. K. Demirli, I.B. Türkşen, Sonar based mobile robot localization by using fuzzy triangulation. Robot. Autonom. Syst. 33(2–3), 109–123 (2000)

    Article  Google Scholar 

  17. R.E. Moore, R.B. Kearfott, M.J. Cloud, Introduction to Interval Analysis (SIAM Publications, Philadelphia, PA, 2009)

    Book  Google Scholar 

  18. G. Alefeld, J. Herzberger, Introduction to Interval Computations (Academic Press, New York, 1983)

    MATH  Google Scholar 

  19. M. Kieffer, L. Jaulin, E. Walter, D. Meizel, Robust autonomous robot localization using interval analysis. Reliable Comput. 6(3), 337–362 (2000)

    Article  MathSciNet  Google Scholar 

  20. L.A. Jaulin, Nonlinear set membership approach for the localization and map building of underwater robots. IEEE Trans. Robot. 25(1), 88–98 (2009)

    Article  Google Scholar 

  21. L. Jaulin, D. Henrion, Contracting optimally an interval matrix without loosing any positive semi-definite matrix is a tractable problem. Reliable Comput. 11, 1–17 (2005)

    Article  MathSciNet  Google Scholar 

  22. A. Arsénio, M.I. Ribeiro, Absolute localization of mobile robots using natural landmarks. Electronics, Circuits and Systems, IEEE 2, 483–486 (1998)

    Google Scholar 

  23. M. Betke, G. Leonid, Mobile robot localization using landmarks. IEEE Trans. Robot. Autom. 13(2), 251–263 (1997)

    Article  Google Scholar 

  24. C. Yuqing, Y. Hu, Z. Ma, Relative Localization of Mobile Robots Based on Bayesian Theory. Control Conference (CCC 2007) Chinese (2007), pp. 108–112

    Google Scholar 

  25. X.S. Zhou, S.I. Roumeliotis, Robot-to-robot relative pose estimation from range measurements. IEEE Trans. Robot. 24(6), 1379–1393 (2008)

    Article  Google Scholar 

  26. U.D. Hanebeck, S. Günther, Set theoretic localization of fast mobile robots using an angle measurement technique. IEEE Robot. Autom. 2, 1387–1394 (1996)

    Google Scholar 

  27. T. Eren, Using angle of arrival (bearing) information for localization in robot networks. Turk. J. Electr. Eng. Comput. Sci. 15(2), 169–186 (2007)

    Google Scholar 

  28. N.R. Mahato, L. Jaulin, S. Chakraverty, Localization for Group of Robots using Matrix Contractors. 10th Summer Workshop on Interval Methods and 3rd International Symposium on Set Membership-Application, Reliability and Theory (SWIM-SMART 2017), Manchester (2017), pp. 91–97

    Google Scholar 

  29. D. Dubois, E. Kerre, R. Mesiar, H. Prade, Fuzzy Interval Analysis. Fundamentals of Fuzzy Sets (Springer, Boston, MA, 2000)

    Book  Google Scholar 

  30. A. Mazeika, L. Jaulin, C. Osswald, A new approach for computing with fuzzy sets using interval analysis, in Information Fusion (IEEE, 2007), pp. 1–8

    Google Scholar 

  31. G. Grätzer, General Lattice Theory (Springer Science and Business Media, Berlin, 2002)

    MATH  Google Scholar 

  32. L. Jaulin, M. Kieffer, O. Didrit, E. Walter, Applied Interval Analysis: With Examples in Parameter and State Estimation. Roust Control and Robotics (Springer, London, 2001)

    Book  Google Scholar 

  33. I. Araya, B. Neveu, G. Trombettoni, Exploiting common subexpressions in numerical CSPs, in International Conference on Principles and Practice of Constraint Programming (2008), pp. 342–357

    Google Scholar 

  34. G. Chabert, L. Jaulin, Computing the pessimism of inclusion functions. Reliable Comput. 13, 489–504 (2007)

    Article  MathSciNet  Google Scholar 

  35. G. Chabert, L. Jaulin, Contractor programming. Artif. Intell. 173(11), 1079–1100 (2009)

    Article  MathSciNet  Google Scholar 

  36. A. Tarski, A lattice-theoretical fix-point theorem and its applications. Pac. J. Math. 5, 285–309 (1955)

    Article  Google Scholar 

  37. V.K. Garg, Introduction to Lattice Theory with Computer Science Applications (Wiley, New Jersey, 2015)

    Book  Google Scholar 

Download references

Acknowledgements

The first author is thankful for the support by Raman-Charpak Fellowship 2016, Indo-French Center for the Promotion of Advanced Research, New Delhi, India, for a part of the work done in France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. R. Mahato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahato, N.R., Chakraverty, S., Jaulin, L. (2018). Fuzzy Matrix Contractor Based Approach for Localization of Robots. In: Chakraverty, S., Perera, S. (eds) Recent Advances in Applications of Computational and Fuzzy Mathematics. Springer, Singapore. https://doi.org/10.1007/978-981-13-1153-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1153-6_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1152-9

  • Online ISBN: 978-981-13-1153-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics