Skip to main content

ANN Based Solution of Static Structural Problem with Fuzzy Parameters

  • Chapter
  • First Online:
Book cover Recent Advances in Applications of Computational and Fuzzy Mathematics

Abstract

Usual finite element method for static analysis of structures with crisp parameters converts the problem into an algebraic system of linear equations. In actual sense, the structural parameters do involve uncertainties due to various causes and then the governing equations become uncertain which may not be handled by usual methods. It may be noted that the uncertainty here has been taken as fuzzy. As such, one will get then fuzzy system of linear equations in case of static problems. There exist various methods to solve the crisp system of equations such as Gauss elimination, Gauss Jacobi, Gauss–Seidel, and SOR method. But we have very few methods to solve these when uncertainty in term of fuzzy is involved in particular to the tilted problems. In view of the above, this chapter incorporates a new method, viz. the concept of artificial neural network (ANN) in solving the fuzzy linear system of equations corresponding to the static problem of structure. Detail procedure is presented followed by simulation for different example problems of civil structures. Algorithm is also illustrated by solving few numerical examples, and the obtained results are compared in special cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Dhingra, S. Rao, V. Kumar, Nonlinear membership functions in multiobjective fuzzy optimization of mechanical and structural systems. AIAA J 30(1), 251–260 (1992)

    Article  Google Scholar 

  2. B. Moller, W. Graf, M. Beer, Fuzzy structural analysis using α-level optimization. Comput. Mech. 26(6), 547–565 (2000)

    Article  Google Scholar 

  3. M. Hanss, The transformation method for the simulation and analysis of systems with uncertain parameters. Fuzzy Sets Syst. 130(3), 277–289 (2002)

    Article  MathSciNet  Google Scholar 

  4. F. Massa, T. Tison, B. Lallemand, A fuzzy procedure for the static design of imprecise structures. Comput. Methods Appl. Mech. Eng. 195(9), 925–941 (2006)

    Article  Google Scholar 

  5. M.R. Rao, A. Pownuk, S. Vandewalle, D. Moens, Transient response of structures with uncertain structural parameters. Struct. Saf. 32(6), 449–460 (2010)

    Article  Google Scholar 

  6. R.L. Mullen, R.L. Muhanna, Bounds of structural response for all possible loading combinations. J. Struct. Eng. 125(1), 98–106 (1999)

    Article  Google Scholar 

  7. M. Hanss, K. Willner, A fuzzy arithmetical approach to the solution of finite element problems with uncertain parameters. Mech. Res. Commun. 27(3), 257–272 (2000)

    Article  Google Scholar 

  8. I. Skalna, M.R. Rao, A. Pownuk, Systems of fuzzy equations in structural mechanics. J. Comput. Appl. Math. 218(1), 149–156 (2008)

    Article  MathSciNet  Google Scholar 

  9. W. Verhaeghe, M. De Munck, W. Desmet, D. Vandepitte, D. Moens, A fuzzy finite element analysis technique for structural static analysis based on interval fields. 4th international workshop on reliable engineering computing, Research Publishing Services, 117–128, 2010

    Google Scholar 

  10. A.S. Balu, B.N. Rao, efficient explicit formulation for practical fuzzy structural analysis. Sadhana 36(4), 463–488 (2011)

    Article  Google Scholar 

  11. A.S. Balu, B.N. Rao, Explicit fuzzy analysis of systems with imprecise properties. Int. J. Mech. Mater. Des. 7(4), 283 (2011)

    Article  Google Scholar 

  12. A.S. Balu, B.N. Rao, High dimensional model representation based formulations for fuzzy finite element analysis of structures. Finite Elem. Anal. Des. 50, 217–230 (2012)

    Article  Google Scholar 

  13. S.S. Rao, J.P. Sawyer, Fuzzy finite element approach for the analysis of imprecisely defined systems. AIAA J. 33(12), 2364–2370 (1995)

    Article  Google Scholar 

  14. U.O. Akpan, T.S. Koko, I.R. Orisamolu, B.K. Gallant, Practical fuzzy finite element analysis of structures. Finite Elem. Anal. Des. 38(2), 93–111 (2001)

    Article  Google Scholar 

  15. D. Behera, S. Chakraverty, Fuzzy analysis of structures with imprecisely defined properties. Comput. Modell. Eng. Sci. 96(5), 317–337 (2013)

    MathSciNet  MATH  Google Scholar 

  16. D. Behera, S. Chakraverty, Fuzzy finite element analysis of imprecisely defined structures with fuzzy nodal force. Eng. Appl. Artif. Intell. 26(10), 2458–2466 (2013)

    Article  Google Scholar 

  17. D. Behera, S. Chakraverty, Fuzzy finite element based solution of uncertain static problems of structural mechanics. Int. J. Comput. Appl. 69(15), 6–11 (2013)

    Google Scholar 

  18. L.A. Zadeh, Information and control. Fuzzy Sets 8(3), 338–353 (1965)

    Google Scholar 

  19. M. Friedman, M. Ming, A. Kandel, Fuzzy linear systems. Fuzzy Sets Syst. 96(2), 201–209 (1998)

    Article  MathSciNet  Google Scholar 

  20. S. Abbasbandy, M. Alavi, A method for solving fuzzy linear systems. Iranian J. Fuzzy Sys. 2(2), 37–43 (2005)

    MathSciNet  MATH  Google Scholar 

  21. H.M. Nehi, H.R. Maleki, M. Mashinchi, A canonical representation for the solution of fuzzy linear system and fuzzy linear programming problem. J. Appl. Mathe. Computing 20(1), 345–354 (2006)

    Article  MathSciNet  Google Scholar 

  22. S. Chakraverty, D. Behera, Fuzzy system of linear equations with crisp coefficients. J. Intell. Fuzzy Syst. 25(1), 201–207 (2013)

    MathSciNet  MATH  Google Scholar 

  23. S. Chakraverty, M. Hladík, N.R. Mahato, A sign function approach to solve algebraically interval system of linear equations for nonnegative solutions. Fundam. Informaticae 152(1), 13–31 (2017)

    Article  MathSciNet  Google Scholar 

  24. W.S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5(4), 115–133 (1943)

    Article  MathSciNet  Google Scholar 

  25. J.M. Zurada, Introduction to Artificial Neural Networks (West Publishing Company, St. Paul, MN, 1992)

    Google Scholar 

  26. R. Rojas, Neural networks: a systematic introduction (Springer, Berlin, 1996)

    Book  Google Scholar 

  27. S.S. Haykin, Neural networks: a comprehensive foundation (Prentice Hall Inc., New Jersey, 1999)

    MATH  Google Scholar 

  28. J.A. Anderson, An Introduction to Neural Networks (MIT Press, Cambridge, MA, 1995)

    MATH  Google Scholar 

  29. R.J. Schalkoff, Artificial neural networks (McGraw-Hill, New York, 1997)

    MATH  Google Scholar 

  30. T. Khanna, Foundations of Neural Networks. Addison Wesley Press, 1990

    Google Scholar 

  31. Yegnanarayana B. Artificial, Neural Networks, Eastern Economy Edition (Prentice Hall of India Pvt. Ltd., New Delhi, 2009)

    Google Scholar 

  32. S. Chakraverty, S. Mall, Artificial neural networks for engineers and scientists: solving ordinary differential equations (CRC Press, Boca Raton, FL, 2017)

    Book  Google Scholar 

  33. D.E. Rumelhart, G.E. Hinton, J.L. McClelland, Parallel Distributed Processing (MIT Press, Cambridge, MA, 1986)

    Google Scholar 

  34. H.J. Zimmermann, Fuzzy Set Theory and Its Application, 2nd edn. Allied Publishers (Indian Reprint), 1996

    Chapter  Google Scholar 

  35. Z. Zhou, L. Chen, L. Wan, Neural network algorithm for solving system of linear equations. Comput. Intell. Nat. Computing, IEEE 2, 7–10 (2009)

    Google Scholar 

  36. T. Rahgooy, H.S. Yazdi, R. Monsefi, Fuzzy complex system of linear equations applied to circuit analysis. Int. J. Comput. Electr. Eng. 1(5), 535–541 (2009)

    Article  Google Scholar 

  37. S. Das, S. Chakraverty, Numerical solution of interval and fuzzy system of linear equations. Appl. Appl. Mathe. 7(1), (2012)

    Google Scholar 

  38. G. Shu-Xiang, L. Zhen-zhou, Interval arithmetic and static interval finite element method. Appl. Mathe. Mech. 22(12), 1390–1396 (2001)

    Article  Google Scholar 

  39. D. Behera, Numerical Solution of Static and Dynamic Problems of Imprecisely Defined Structural Systems. NIT Rourkela (Doctoral dissertation), 2014

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Jeswal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jeswal, S.K., Chakraverty, S. (2018). ANN Based Solution of Static Structural Problem with Fuzzy Parameters. In: Chakraverty, S., Perera, S. (eds) Recent Advances in Applications of Computational and Fuzzy Mathematics. Springer, Singapore. https://doi.org/10.1007/978-981-13-1153-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1153-6_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1152-9

  • Online ISBN: 978-981-13-1153-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics