Skip to main content

Generalizations of the Volume Conjecture

  • Chapter
  • First Online:
Volume Conjecture for Knots

Part of the book series: SpringerBriefs in Mathematical Physics ((BRIEFSMAPHY,volume 30))

Abstract

In this chapter we show various generalizations of the volume conjecture. Firstly, we introduce the complexification of the conjecture by studying the imaginary part of \(\log {J_N(K;\exp (2\pi \sqrt {-1}/N))}\). We expect the (\(\mathrm {SL}(2;\mathbb {C})\)) Chern–Simons invariant to appear. Secondly, we refine the conjecture by considering more precise approximation of the colored Jones polynomial. We conjecture that the Reidemeister torsion would appear. Lastly, we perturb \(2\pi \sqrt {-1}\) in \(\exp (2\pi \sqrt {-1}/N)\) slightly and see what happens to the asymptotic expansion of the colored Jones polynomial. The corresponding topological phenomenon is to perturb the hyperbolic structure of the knot complement, provided the knot is hyperbolic. If the knot is non-hyperbolic we expect various representations of the fundamental group of the knot complement to \(\mathrm {SL}(2;\mathbb {C})\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The first author learned it from Kashaev. Writing \(\operatorname {Re}{w}=x\) and \(\operatorname {Im}{w}=y\), \(\tan {w}=\frac {\cosh {y}\sin {x}+\sqrt {-1}\sinh {y}\cos {x}}{\cosh {y}\cos {x}-\sqrt {-1}\sinh {y}\sin {x}}\). So \(\tan {w}\to \sqrt {-1}\) when y → and \(\tan {w}\to -\sqrt {-1}\) when y →−.

  2. 2.

    The proof in [64] is wrong but the statement remains true, which was informed by Ka Ho Wong.

References

  1. J.E. Andersen, S.K. Hansen, Asymptotics of the quantum invariants for surgeries on the figure 8 knot. J. Knot Theory Ramif. 15(4), 479–548 (2006). MR MR2221531

    Google Scholar 

  2. J.E. Andersen, R. Kashaev, A TQFT from quantum Teichmüller theory. Commun. Math. Phys. 330(3), 887–934 (2014). MR 3227503

    Google Scholar 

  3. J.E. Andersen, R.M. Kashaev, Quantum Teichmüller theory and TQFT, in XVIIth International Congress on Mathematical Physics (World Science Publications, Hackensack, 2014), pp. 684–692. MR 3204520

    Google Scholar 

  4. J.E. Andersen, S. Marzioni, Level N Teichmüller TQFT and complex Chern-Simons theory, in Quantum Geometry of Moduli Spaces with Applications to TQFT and RNA Folding, ed. by M. Schlichenmaier. Travaux Mathématiques, vol. 25. (Faculty of Science, Technology and Communication, University of Luxembourg, Luxembourg, 2017), pp. 97–146. MR 3700061

    Google Scholar 

  5. J.E. Andersen, J.-J.K. Nissen, Asymptotic aspects of the Teichmüller TQFT, in Quantum Geometry of Moduli Spaces with Applications to TQFT and RNA Folding, ed. by M. Schlichenmaier. Travaux Mathématiques, vol. 25. (Faculty of Science, Technology and Communication, University of Luxembourg, Luxembourg, 2017), pp. 41–95. MR 3700060

    Google Scholar 

  6. M. Atiyah, The Geometry and Physics of Knots. Lezioni Lincee. [Lincei Lectures] (Cambridge University Press, Cambridge, 1990). MR 1078014

    Google Scholar 

  7. Q. Chen, T. Yang, A volume conjecture for a family of Turaev-Viro type invariants of 3-manifolds with boundary (2015). arXiv:1503.02547

    Google Scholar 

  8. T. Dimofte, S. Gukov, Quantum field theory and the volume conjecture, in Interactions Between Hyperbolic Geometry, Quantum Topology and Number Theory, Contemporary Mathematics, ed. by A. Champanerkar, vol. 541 (Rhode Island American Mathematical Society, Providence, 2011), pp. 41–67. MR 2796627 (2012c:58037)

    Google Scholar 

  9. L.D. Faddeev, Discrete Heisenberg-Weyl group and modular group. Lett. Math. Phys. 34(3), 249–254 (1995). MR 1345554 (96i:46075)

    Google Scholar 

  10. S. Garoufalidis, T.T.Q. Lê, Asymptotics of the colored Jones function of a knot. Geom. Topol. 15(4), 2135–2180 (2011). MR 2860990

    Google Scholar 

  11. S. Gukov, H. Murakami, \(\mathrm {SL}(2,\mathbb {C})\) Chern-Simons theory and the asymptotic behavior of the colored Jones polynomial, in Modular Forms and String Duality, ed. by N. Yui, et al. Fields Institute Communications, vol. 54 (American Mathematical Society, Providence, 2008), pp. 261–277. MR 2454330

    Google Scholar 

  12. K. Hikami, H. Murakami, Colored Jones polynomials with polynomial growth. Commun. Contemp. Math. 10(suppl. 1), 815–834 (2008). MR MR2468365

    Google Scholar 

  13. R.M. Kashaev, The hyperbolic volume of knots from the quantum dilogarithm. Lett. Math. Phys. 39(3), 269–275 (1997). MR 1434238

    Google Scholar 

  14. T. Kohno, Conformal Field Theory and Topology. Translations of Mathematical Monographs, vol. 210 (American Mathematical Society, Providence, 2002); Translated from the 1998 Japanese original by the author, Iwanami Series in Modern Mathematics. MR 1905659

    Google Scholar 

  15. J. Milnor, Hyperbolic geometry: the first 150 years. Bull. Am. Math. Soc. (N.S.) 6(1), 9–24 (1982). MR 82m:57005

    Google Scholar 

  16. H. Murakami, Some limits of the colored Jones polynomials of the figure-eight knot. Kyungpook Math. J. 44(3), 369–383 (2004). MR MR2095421

    Google Scholar 

  17. H. Murakami, The colored Jones polynomials and the Alexander polynomial of the figure-eight knot. JP J. Geom. Topol. 7(2), 249–269 (2007). MR MR2349300 (2008g:57014)

    Google Scholar 

  18. H. Murakami, The coloured Jones polynomial, the Chern-Simons invariant, and the Reidemeister torsion of the figure-eight knot. J. Topol. 6(1), 193–216 (2013). MR 3029425

    Google Scholar 

  19. H. Murakami, The twisted Reidemeister torsion of an iterated torus knot (2016). arXiv: 1602.04547

    Google Scholar 

  20. H. Murakami, J. Murakami, M. Okamoto, T. Takata, Y. Yokota, Kashaev’s conjecture and the Chern-Simons invariants of knots and links. Exp. Math. 11(3), 427–435 (2002). MR 1 959 752

    Google Scholar 

  21. H. Murakami, Y. Yokota, The colored Jones polynomials of the figure-eight knot and its Dehn surgery spaces. J. Reine Angew. Math. 607, 47–68 (2007). MR MR2338120

    Google Scholar 

  22. W.D. Neumann, Extended Bloch group and the Cheeger-Chern-Simons class. Geom. Topol. 8, 413–474 (2004) (electronic). MR MR2033484 (2005e:57042)

    Google Scholar 

  23. T. Ohtsuki, On the asymptotic expansion of the Kashaev invariant of the 52 knot. Quantum Topol. 7(4), 669–735 (2016). MR 3593566

    Google Scholar 

  24. T. Ohtsuki, Y. Yokota, On the asymptoitc expansions of the Kashaev invariant of the knots with 6 crossings, Math. Proc. Camb. Philos. Soc. (To appear). https://doi.org/10.1017/S0305004117000494

  25. E. Witten, Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121(3), 351–399 (1989). MR 990772

    Google Scholar 

  26. C.K. Zickert, The volume and Chern-Simons invariant of a representation. Duke Math. J. 150(3), 489–532 (2009). MR 2582103

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Murakami, H., Yokota, Y. (2018). Generalizations of the Volume Conjecture. In: Volume Conjecture for Knots. SpringerBriefs in Mathematical Physics, vol 30. Springer, Singapore. https://doi.org/10.1007/978-981-13-1150-5_6

Download citation

Publish with us

Policies and ethics