Skip to main content

A Feature-Reduced Discretized Random Forest Model for Oral Bioavailability Data Classification

  • Conference paper
  • First Online:
Book cover Computational Intelligence: Theories, Applications and Future Directions - Volume II

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 799))

  • 484 Accesses

Abstract

Oral bioavailability is the measurement of the fraction of admissible drug which reaches the site of action in unchanged form. It is one of the principal pharmacokinetic properties and can be predicted in an early phase of drug discovery and development process. Various computational methods have been used for predicting oral bioavailability of a drug candidate in the literature, which selects some of the compounds from the huge set which are most effective drug candidates and also reduces the cost factor of clinical trials. In this study, we have assigned a class label of all chemical compounds as high (Fractional Absorption F%\(\,\ge \,50\)) or low (Fractional Absorption F% < 50) oral bioavailability values. Here, the main aim is to obtain an effective model for classification of oral bioavailability data. In order to achieve this, we have preprocessed oral bioavailable data using Pearson correlation and subset selection as feature reduction methods and data discretization using binning. Discretization is one of the popular data preprocessing technique, which maps continuous data points into discrete values for easy data visualization and improves the performance of classification model. The effectiveness of feature reduction with discretization method for oral bioavailable data has been represented in terms of performance matrices like accuracy percentage, sensitivity, specificity, precision, and negative predictive value. Based on the comparative analysis of the performance of various classification models like artificial neural network (ANN), Bayesian classifier, support vector machine (SVM), K-nearest neighbor with feature-reduced discretized random forest model, we conclude that our proposed model gives better performance over the other compared models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Korkmaz, S., Zararsiz, G., Goksuluk, D.: MLViS: a web tool for machine learning-based virtual screening in early-phase of drug discovery and development. PloS One 10(4), e0124600 (2015)

    Article  Google Scholar 

  2. Moda, T.L., Montanari, C.A., Andricopulo, A.D.: Hologram QSAR model for the prediction of human oral bioavailability. Bioorgan. Med. Chem. 15(24), 7738–7745 (2007)

    Article  Google Scholar 

  3. Kumar, R., Sharma, A., Varadwaj, P.K.: A prediction model for oral bioavailability of drugs using physicochemical properties by support vector machine. J. Nat. Sci. Biol. Med. 2(2), 168 (2011)

    Google Scholar 

  4. Veber, D.F., Johnson, S.R., Cheng, H.Y., Smith, B.R., Ward, K.W., Kopple, K.D.: Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 45, 261523 (2002)

    Article  Google Scholar 

  5. Waterbeemd, H., Gifford, E.: ADMET in silico modeling: towards prediction paradise? Nat. Rev. Drug Discov. 2, 192204 (2003)

    Google Scholar 

  6. Eisenberg, D.M., Davis, R.B., Ettner, S.L., Appel, S., Wilkey, S., et al.: Trends in alternative medicine use in the United States, 1990–1997: results of a follow-up national survey. JAMA 280, 1569–1575 (1998)

    Article  Google Scholar 

  7. Sparreboom, A., Cox, M.C., Acharya, M.R., Figg, W.D.: Herbal remedies in the United States: potential adverse interactions with anticancer agents. J. Clin. Oncol. 22, 2489–2503 (2004)

    Article  Google Scholar 

  8. Lipinski, C.A., et al.: Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23(1–3), 3–25 (1997)

    Google Scholar 

  9. Lu, J.J., Crimin, K., Goodwin, J.T., Crivori, P., Orrenius, C., Xing, L., et al.: Influence of molecular flexibility and polar surface area metrics on oral bioavailability in the rat. J. Med. Chem. 47, 61047 (2004)

    Google Scholar 

  10. Somogyi, A., Eichelbaum, M., Gugler, R.: Prediction of bioavailability for drugs with a high first-pass effect using oral clearance data. Eur. J. Clin. Pharmacol. 22(1), 85–90 (1982)

    Article  Google Scholar 

  11. Klopman, G., Stefan, L.R., Saiakhov, R.D.: ADME evaluation: 2. A computer model for the prediction of intestinal absorption in humans. Eur. J. Pharm. Sci. 17(4), 253–263 (2002)

    Article  Google Scholar 

  12. Podlogar, B.L., Muegge, I., Brice, L.J.: Computational methods to estimate drug development parameters. Curr. Opin. Drug Discov. Dev. 4(1), 102–109 (2001)

    Google Scholar 

  13. Usansky, H.H., Sinko, P.J.: Estimating human drug oral absorption kinetics from Caco-2 permeability using an absorption-disposition model: model development and evaluation and derivation of analytical solutions for ka and Fa. J. Pharmacol. Exp. Ther. 314(1), 391–399 (2005)

    Article  Google Scholar 

  14. Yoshida, F., Topliss, J.G.: QSAR model for drug human oral bioavailability 1. J. Med. Chem. 43(13), 2575–2585 (2000)

    Article  Google Scholar 

  15. Archetti, F., et al.: Genetic programming for computational pharmacokinetics in drug discovery and development. Genet. Program. Evolvable Mach. 8(4), 413–432 (2007)

    Google Scholar 

  16. Wang, J., et al.: Genetic algorithm-optimized QSPR models for bioavailability, protein binding, and urinary excretion. J. Chem. Inf. Model. 46(6), 2674–2683 (2006)

    Google Scholar 

  17. Turner, J.V., Maddalena, D.J., Agatonovic-Kustrin, S.: Bioavailability prediction based on molecular structure for a diverse series of drugs. Pharm. Res. 21, 6882 (2004)

    Article  Google Scholar 

  18. Frhlich, H., Sieker, F., Wegner, K., Zell, A.: Kernel functions for attributed molecular graphs—a new similarity based approach to ADME prediction in classification and regression. QSAR Comb. Sci. 25, 31726 (2005)

    Google Scholar 

  19. Liu, H.X., Hu, R.J., Zhang, R.S., Yao, X.J., Liu, M.C., Hu, Z.D., et al.: The prediction of human oral absorption for diffusion rate-limited drugs based on heuristic method and support vector machine. J. Comput. Aided Mol. Des. 19, 3346 (2005)

    Google Scholar 

  20. Chen, B., Harrison, R.F., Papadatos, G., Willett, P., Wood, D.J., Lewell, X.Q., et al.: Evaluation of machine-learning methods for ligand-based virtual screening. J. Comp. Aid Mol. Des. 21, 5362 (2007)

    Article  Google Scholar 

  21. Keiser, J., Manneck, T., Vargas, M.: Interactions of mefloquine with praziquantel in the Schistosoma mansoni mouse model and in vitro. J. Antimicrob. Chemother. 66, 17911797 (2011). https://doi.org/10.1093/jac/dkr178. PMID: 21602552

    Article  Google Scholar 

  22. Bielska, E., et al.: Virtual screening strategies in drug design methods and applications. BioTechnol. J. Biotechnol. Comput. Biol. Bionanotechnol. 92(3) (2011)

    Google Scholar 

  23. Korkmaz, S., Zararsiz, G., Goksuluk, D.: Drug/nondrug classification using support vector machines with various feature selection strategies. Comput. Methods Programs Biomed. 117(2), 51–60 (2014)

    Google Scholar 

  24. Arulmozhi, V., Rajesh, R.: Chemoinformatics—a quick review. In: 2011 3rd International Conference on Electronics Computer Technology (ICECT), vol. 6. IEEE (2011)

    Google Scholar 

  25. Chonde, S., Kumara, S.: Cheminformatics: an introductory review. In: IIE Annual Conference, Proceedings. Institute of Industrial Engineers-Publisher (2014)

    Google Scholar 

  26. Hou, T., Wang, J., Zhang, W., Xu, X.: ADME evaluation in drug discovery. 6. If the oral bioavailability in human can be effectively predicted by simple molecular properties-based rules? J. Chem. Inf. Model. 47, 460–463 (2007)

    Google Scholar 

  27. Mitchell, J.B.O.: Machine learning methods in chemoinformatics. Wiley Interdiscip. Rev. Comput. Mol. Sci. 4(5), 468–481 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyanka Shit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shit, P., Banka, H. (2019). A Feature-Reduced Discretized Random Forest Model for Oral Bioavailability Data Classification. In: Verma, N., Ghosh, A. (eds) Computational Intelligence: Theories, Applications and Future Directions - Volume II. Advances in Intelligent Systems and Computing, vol 799. Springer, Singapore. https://doi.org/10.1007/978-981-13-1135-2_3

Download citation

Publish with us

Policies and ethics