Skip to main content

Feature Learning Using Stacked Autoencoder for Shared and Multimodal Fusion of Medical Images

  • Conference paper
  • First Online:
Computational Intelligence: Theories, Applications and Future Directions - Volume I

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 798))

Abstract

In recent years, deep learning has become a powerful tool for medical image analysis mainly because of their ability to automatically extract more abstract features from large training data. The current methods used for multiple modalities are mostly conventional machine learning, in which people use the handcrafted feature, which is very difficult to construct for large training sizes. Deep learning which is an advancement in the machine learning automatically extracts relevant features from the data. In this paper, we have used deep learning model for the multimodal data. The basic building blocks of the network are stacked autoencoder for the multiple modalities. The performance of deep learning-based models with and without multimodal fusion and shared learning are compared. The results indicates that the use of multimodal fusion and shared learning help to improve deep learning-based medical image analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural network. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  2. Howard, A.G.: Some Improvements on Deep Convolutional Neural Network Based Image Classification (2013). arXiv preprint arXiv:1312.5402

  3. Szegedy, C., Toshev, A., Erhan, D.: Deep neural networks for object detection. In: Advances in Neural Information Processing Systems, pp. 2553–2561 (2013)

    Google Scholar 

  4. Zhang, J., Zong, C.: Deep Neural Networks in Machine Translation: An Overview (2015)

    Article  Google Scholar 

  5. Edelman, R.R., Warach, S.: Magnetic resonance imaging. New England Journal of Medicine 328(11), 785–791 (1993)

    Article  Google Scholar 

  6. Ogawa, S., Lee, T.M., Kay, A.R., Tank, D.W.: Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. 87(24), 9868–9872 (1990)

    Article  Google Scholar 

  7. van Gerven, M.A., de Lange, F.P., Heskes, T.: Neural decoding with hierarchical generative models. Neural Comput. 22(12), 3127–3142 (2010)

    Google Scholar 

  8. Bailey, D.L., Townsend, D.W., Valk, P.E., Maisey, M.N.: Positron Emission Tomography. Springer, London (2005)

    Book  Google Scholar 

  9. Hsieh, J.: Computed Tomography: Principles, Design, Artifacts, and Recent Advances. SPIE Bellingham, WA (2009)

    Google Scholar 

  10. Chapman, D., Thomlinson, W., Johnston, R. et al.: Diffraction enhanced x-ray imaging. Phys. Med. Biol. 42(11), 2015 (1997)

    Google Scholar 

  11. Gurcan, M.N., Boucheron, L.E., Can, A., Madabhushi, A., Rajpoot, N.M., Yener, B.: Histopathological image analysis: a review. IEEE Rev. Biomed. Eng. 2, 147–171 (2009)

    Article  Google Scholar 

  12. Plis, S.M., Hjelm, D.R., Salakhutdinov, R., Allen, E.A., Bockholt, H.J., Long, J.D., Johnson, H.J., Paulsen, J.S., Turner, J.A., Calhoun, V.D.: Deep learning for neuroimaging: a validation study. Front. Neurosci. 8 (2014)

    Google Scholar 

  13. Hua, K.L., Hsu, C.H., Hidayati, S.C., Cheng, W.H., Chen, Y.J.: Computer-aided classification of lung nodules on computed tomography images via deep learning technique. Onco Targets Ther. 8 (2015)

    Google Scholar 

  14. Ciresan, D., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Deep neural networks segment neuronal membranes in electron microscopy images. In: Advances in Neural Information Processing Systems, pp. 2843–2851 (2012)

    Google Scholar 

  15. Roth, H.R., Lu, L., Farag, A., Shin, H.C., Liu, J., Turkbey, E.B., Summers, R.M.: Deeporgan: multi-level deep convolutional networks for automated pancreas segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 556–564. Springer, Cham (2015)

    Google Scholar 

  16. Xu, J., Xiang, L., Liu, Q., Gilmore, H., Wu, J., Tang, J., Madabhushi, A.: Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images. IEEE Trans. Med. Imaging 35(1), 119–130 (2016)

    Article  Google Scholar 

  17. Koyamada, S., Shikauchi, Y., Nakae, K., Koyama, M., Ishii, S.: Deep Learning of fMRI Big Data: A Novel Approach to Subject-Transfer Decoding (2015). arXiv preprint arXiv:1502.00093

  18. Zhang, D., Shen, D., Alzheimer’s Disease Neuroimaging Initiative: Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease. NeuroImage 59(2), 895–907 (2012)

    Article  MathSciNet  Google Scholar 

  19. Zhang, D., Wang, Y., Zhou, L., Yuan, H., Shen, D., Alzheimer’s Disease Neuroimaging Initiative: Multimodal classification of Alzheimer’s disease and mild cognitive impairment. Neuroimage 55(3), 856–867 (2011)

    Google Scholar 

  20. Sevakula, R.K., Verma, N.K.: Assessing generalization ability of majority vote point classifiers. IEEE Trans. Neural Netw. Learn. Syst. 28(12), 2985–2997 (2017)

    Article  MathSciNet  Google Scholar 

  21. Gray, K.R., Aljabar, P., Heckemann, R.A., Hammers, A., Rueckert, D., Alzheimer’s Disease Neuroimaging Initiative: Random forest-based similarity measures for multi-modal classification of Alzheimer’s disease. NeuroImage 65, 167–175 (2013)

    Article  Google Scholar 

  22. Singh, V., Gupta, R.K., Sevakula, R.K., Verma, N.K.: Comparative analysis of Gaussian mixture model, logistic regression and random forest for big data classification using map reduce. In: 11th IEEE International Conference on Industrial and Information Systems (ICIIS), pp. 333–338. IEEE (2016)

    Google Scholar 

  23. Cheng, B., Zhang, D., Chen, S., Kaufer, D.I., Shen, D., Alzheimers Disease Neuroimaging Initiative: Semi-supervised multimodal relevance vector regression improves cognitive performance estimation from imaging and biological biomarkers. Neuroinformatics 11(3), 339–353 (2013)

    Article  Google Scholar 

  24. Young, J., Modat, M., Cardoso, M.J., Mendelson, A., Cash, D., Ourselin, S., Alzheimer’s Disease Neuroimaging Initiative: Accurate multimodal probabilistic prediction of conversion to Alzheimer’s disease in patients with mild cognitive impairment. NeuroImage: Clin. 2, 735–745 (2013)

    Google Scholar 

  25. Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., Ng, A.Y.: Multimodal deep learning. In: Proceedings of the 28th International Conference on Machine Learning (ICML-11), pp. 689–696 (2011)

    Google Scholar 

  26. Srivastava, N., Salakhutdinov, R.R.: Multimodal learning with deep boltzmann machines. In: Advances in Neural Information Processing Systems, pp. 2222–2230 (2012)

    Google Scholar 

  27. Suk, H.I., Lee, S.W., Shen, D., Alzheimer’s Disease Neuroimaging Initiative: Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. NeuroImage 101, 569–582 (2014)

    Article  Google Scholar 

  28. Cao, Y., Steffey, S., He, J., Xiao, D., Tao, C., Chen, P., Mller, H.: Medical image retrieval: a multimodal approach. Cancer Inf. 13(Suppl 3), 125 (2014)

    Google Scholar 

  29. Singh, V., Baranwal, N., Sevakula, R.K., Verma, N.K., Cui, Y.: Layerwise feature selection in Stacked Sparse Auto-Encoder for tumor type prediction. In: 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 15421548. IEEE (2016)

    Google Scholar 

  30. Singh, V., Verma, N.K.: Deep learning architecture for high-level feature generation using stacked auto encoder for business intelligence. Complex Systems: Solutions and Challenges in Economics, Management and Engineering. Springer International Publishing, Basel (2017) (Accepted)

    Google Scholar 

  31. Sevakula, R.K., Thirukovalluru, R., Verma, N.K., Cui, Y.: Deep neural networks for transcriptome based cancer classification. BMC Bioinformatics (2017) (Accepted)

    Google Scholar 

  32. Rajurkar, S., Singh, V., Verma, N.K., Cui, Y.: Deep stacked auto-encoder with deep fuzzy network for transcriptome based tumor type classification. BMC Bioinformatics (2017) (Accepted)

    Google Scholar 

  33. Sevakula, R.K., Singh, V., Verma, N.K., Kumar, C., Cui, Y.: Transfer learning for molecular cancer classification using deep neural networks. IEEE/ACM Trans. Comput. Biol. Bioinform. (1), 1–1 (2018)

    Google Scholar 

  34. Hinton, G.E., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief nets. Neural comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  Google Scholar 

  35. Broyden, C.G.: The convergence of a class of double-rank minimization algorithms. J. Inst. Maths. Appl. 6, 76–90 (1970)

    Article  Google Scholar 

  36. Fletcher, R.: A new approach to variable metric algorithms. Comput. J. 13, 317–322 (1970)

    Article  Google Scholar 

  37. Goldfarb, D.: A family of variable metric updates derived by variational means. Math. Comput. 24, 23–26 (1970)

    Article  Google Scholar 

  38. Shanno, D.F.: Conditioning of quasi-Newton methods for function minimization. Math. Comput. 24, 647–656 (1970)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, V., Verma, N.K., Ul Islam, Z., Cui, Y. (2019). Feature Learning Using Stacked Autoencoder for Shared and Multimodal Fusion of Medical Images. In: Verma, N., Ghosh, A. (eds) Computational Intelligence: Theories, Applications and Future Directions - Volume I. Advances in Intelligent Systems and Computing, vol 798. Springer, Singapore. https://doi.org/10.1007/978-981-13-1132-1_5

Download citation

Publish with us

Policies and ethics