Skip to main content

Aerodynamic Parameter Modeling Using TS Fuzzy Systems from Flight Data

  • Conference paper
  • First Online:
Book cover Computational Intelligence: Theories, Applications and Future Directions - Volume I

Abstract

This paper presents the application of fuzzy logic theory for aerodynamic modeling of the fixed wing aircraft. For the demonstration purpose, yawing moment control and stability derivatives of ATTAS aircraft are extracted from the recorded flight data of nonlinear flight profile. Fuzzy-logic-based Takagi-Sugeno (TS) model is used to represent the nonlinear dynamics of the aircraft, which can approximate it into several local linear models. The method shows its benefit when it becomes very difficult to identify the equilibrium points (trim points) due to cross-coupling and nonlinear complexities associated with modern aircraft. The Gustafson and Kessel (G-K) based clustering algorithm is used for fuzzy partitioning of the input spaces. The Gaussian type membership functions are used and its parameters are generated from the training dataset. The fuzzy rules are extracted based on weighted least square algorithms and each rule corresponds to local linear model for mimicking aerodynamic (control and stability) derivatives. Fivefold cross-validation method is used to assess the adequacy of the generated fuzzy model. The parameter tracking trends and mean square error for training and testing data sets show commendable modeling capability of TS fuzzy model for extraction of aerodynamic derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klein, V., Morelli, E.: Aircraft System Identification: Theory and Practice. AIAA, Reston, VA (2006)

    Book  Google Scholar 

  2. Tischler, M., Remple, R.: Aircraft and Rotorcraft System Identification. AIAA, Reston, VA (2006)

    Google Scholar 

  3. Jategoankar, R., Fishenberg, D., Gruenhagen, W.: Aerodynamic modeling and system identification from flight data—recent applications at DLR. J. Aircr. 41(4), 681–691 (2004). https://doi.org/10.2514/1.3165

    Article  Google Scholar 

  4. Jategaonkar, R.V.: Flight Vehicle System Identification A Time Domain Methodology. American Institute of Aeronautics and Astronautics Inc., Reston, Virginia (2006)

    Book  Google Scholar 

  5. Singh, V., Dev, R., Dhar, N.K., Agrawal, P., Verma, N.K.: Adaptive type-2 fuzzy approach for filtering salt and pepper noise in grayscale images. IEEE Trans. Fuzzy Syst. (2018)

    Google Scholar 

  6. Nelles, O.: Nonlinear System Identification from Classical Approaches to Neural Networks and Fuzzy Models. Springer, Berlin, Heidelberg (2001)

    MATH  Google Scholar 

  7. Ghosh, A.K., Raisinghani, S.C., Kalra, P.K.: Two new techniques for aircraft parameter estimation using neural networks. Aeronaut. J. 102(1011), 25–29 (1998)

    Google Scholar 

  8. Ghosh, A.K., Raisinghani, S.C., Khubchandani, S.: Estimation of aircraft lateral-directional parameters using neural networks. J. Aircr. 35(6), 876–881 (1998). https://doi.org/10.2514/2.2407

    Article  Google Scholar 

  9. Ghosh, A.K., Singh, S.: Parameter estimation from flight data using maximum likelihood method and neural network. In: Atmospheric Flight Mechanics Conference and Exhibit-06, Colorado, AIAA Paper No. 2006-6284 (2006)

    Google Scholar 

  10. Ghosh, A.K., Peyada, N.K.: Aircraft parameter estimation using neural network based algorithm. In: AIAA Atmospheric Flight Mechanics Conference, 10–13 Aug 2009, Chicago, Illinois

    Google Scholar 

  11. Sevakula, R.K., Verma, N.K.: Compounding general purpose membership functions for fuzzy support vector machine under noisy environment. IEEE Trans. Fuzzy Syst. 25(6), 1446–1459 (2017)

    Article  Google Scholar 

  12. Rajurkar, S., Singh, V., Verma, N.K., Cui, Y.: Deep stacked auto-encoder with deep fuzzy network for transcriptome based tumor type classification. BMC Bioinformatics, vol. 18 (2017)

    Google Scholar 

  13. Verma, N.K., Hanmandlu, M.: Additive and nonadditive fuzzy hidden Markov models. IEEE Trans. Fuzzy Syst. 18(1), 40–56 (2010)

    Article  Google Scholar 

  14. Verma, N.K., Hanmandlu, M.: From a gaussian mixture model to nonadditive fuzzy systems. IEEE Trans. Fuzzy Syst. 15(5), 809–827 (2007)

    Article  Google Scholar 

  15. Ross, T.J.: Fuzzy logic with Engineering Applications, 3rd edn. Wiley, West Sussex, UK (2010)

    Book  Google Scholar 

  16. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its application to modelling and control. IEEE Trans. Syst Man Cybern. SMC-15, 116–132 (1985)

    Article  Google Scholar 

  17. Singh, D.J., Agrawal, P., Verma, N.K., Ghosh, A.K., Malagaudanavar, A.: Interval type-2 TS fuzzy model for angle of attack sensor of the aircraft. J. Intell. Fuzzy Syst., 1–11 (2017)

    Google Scholar 

  18. Gustafson, D.E., Kessel, W.C.: Fuzzy clustering with fuzzy covariance matrix. In: Proceedings of the IEEE CDC, San Diego, pp. 761–766 (1979)

    Google Scholar 

  19. Abonyi, J., Balazs, F.: Cluster Analysis for Data Mining and System Identification. Birkhauser Verlag AG, Basel, Boston, Berlin (2007)

    Google Scholar 

  20. Mendel, J.M.: Uncertain Rule Based Fuzzy Logic Systems. Prentice Hall PTR Inc., Upper Saddle River, New Jersey (2001)

    MATH  Google Scholar 

  21. Verma, N.K., Roy, A.: Self-optimal clustering technique using optimized threshold function. IEEE Syst. J. 8(4), 1213–1226 (2014)

    Article  Google Scholar 

  22. Verma, N.K., Hanmandlu, M., Ahmad, N.: Cluster-weighted modeling for an Interactive fuzzy system. In: Proceeding of CERA 2005, An International Conference, vol. 2. IIT Roorkee, India, 29 Sept–01 Oct 2005

    Google Scholar 

  23. Verma, N.K., Hanmandlu, M.: Interactive fuzzy system using CWM. In: Proceedings of IEEE Indicon 2005 Conference, Chennai, India, pp. 375–378, 11–13 Dec 2005

    Google Scholar 

  24. Verma, N.K., Haumandlu, M.: Data driven model using Adaptive Fuzzy System. Int. J. Autom. Control 2(4), 447–458 (2008)

    Article  Google Scholar 

  25. Abonyi, J., Babuska, R.: Local and global identification and interpretation of parameters in Takagi-Sugeno fuzzy models. In: Proceedings of IEEE International Conference on Fuzzy Systems, San Antonio, USA, May 2000

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhan Jeet Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, D.J., Verma, N.K., Ghosh, A.K., Sanwale, J., Malagaudanavar, A. (2019). Aerodynamic Parameter Modeling Using TS Fuzzy Systems from Flight Data. In: Verma, N., Ghosh, A. (eds) Computational Intelligence: Theories, Applications and Future Directions - Volume I. Advances in Intelligent Systems and Computing, vol 798. Springer, Singapore. https://doi.org/10.1007/978-981-13-1132-1_33

Download citation

Publish with us

Policies and ethics