Skip to main content

Event-Triggered Sliding Mode Control Based Trajectory Tracking in a Cyber-Physical Space

  • Conference paper
  • First Online:
Computational Intelligence: Theories, Applications and Future Directions - Volume I

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 798))

Abstract

Time-triggered controllers have been developed for many trajectory tracking applications. The efficiency of controller plays an important role along with the accuracy of the tracking. Hence, an event-triggered sliding mode controller in a cyber-physical space is proposed in this paper. Event-triggered approach reduces control efforts of the system as the control actions are generated at specific occurrence of events and thereby reduces load on the communication network. The designed event-triggered approach in a cyber-physical space is integrated with communication protocol to prevent system malfunctioning by delayed and corrupt data packets. The proposed event-triggered controller along with the communication protocol is implemented for an automated-guided vehicle model. The results obtained from event-triggered approach are duly compared with time-triggered controller. The results show the efficiency of developed controller.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang, J.M., Kim, J.H.: Sliding mode control for trajectory tracking of non-holonomic wheeled mobile robots. IEEE Trans. Rob. Autom. 15(3), 578–587 (1999)

    Article  Google Scholar 

  2. Mustafa, A., Dhar, N.K., Agarwal, P., Verma, N.K.: Adaptive backstepping sliding mode control based on nonlinear disturbance observer for trajectory tracking of robotic manipulator. In: IEEE International Conference on Control and Robotics Engineering (ICCRE), Thailand, 2017

    Google Scholar 

  3. Tripathi, V.K., Behera, L., Verma, N.K.: Design of sliding mode and back stepping controllers for a quadcopter. In: 39th National Systems Conference (NSC), pp. 1–6, Dec. 2015

    Google Scholar 

  4. Fang, H., Fan, R., Thuilot, B., Martinet, P.: Trajectory tracking control of farm vehicles in presence of sliding. Rob Autonomous Syst. 54(10), 828–839 (2006)

    Article  Google Scholar 

  5. Ali, S.U., Samar, R., Shah, M.Z., Bhatti, A.I., Munawar, K., Al-Sggaf, U.M.: Lateral guidance and control of UAVs using second-order sliding modes. Aerospace Sci. Technol. 49, 88–100 (2016)

    Article  Google Scholar 

  6. Guerreiro, B.J., Silvestre, C., Cunha, R., Pascoal, A.: Trajectory tracking nonlinear model predictive control for autonomous surface craft. In: 2009 European Control Conference (ECC), Budapest, pp. 1311–1316, 2009

    Google Scholar 

  7. Xargay, E., Dobrokhodov, V., Kaminer, I., Pascoal, A.M., Hovakimyan, N., Cao, C.: Time-critical cooperative control for multiple autonomous vehicles robust decentralized strategies for path-following control and time-coordination over dynamic communications networks. IEEE Control Syst. 32(5), 49–73 (2012)

    Article  MathSciNet  Google Scholar 

  8. Frazzoli, E., Dahleh, M.A., Feron, E.: Robust hybrid control for autonomous vehicle motion planning. In: Proceedings of the 39th IEEE Conference on Decision and Control, vol. 1, pp. 821–826, Sydney, NSW, 2000

    Google Scholar 

  9. Hwang, C.L., Chang, L.J., Yu, Y.S.: Network-based fuzzy decentralized sliding-mode control for car-like mobile robots. IEEE Trans. Ind. Electron. 54(1), 574–585 (2007)

    Article  Google Scholar 

  10. Freire, E., Bastos-Filho, T., Sarcinelli-Filho, M., Carelli, R.: A new mobile robot control approach via fusion of control signals. In: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 34, no. 1, pp. 419–429, Feb. 2004

    Article  Google Scholar 

  11. Kung, Y.S., Liaw, C.M.: A fuzzy controller improving a linear model following controller for motor drives. IEEE Trans. Fuzzy Syst. 2(3), 194–202 (1994)

    Article  Google Scholar 

  12. Yook, J., Tilbury, D., Soparkar, N.: Trading computation for bandwidth: reducing communication in distributed control systems using state estimators. IEEE Trans. Control Syst. Technol. 10(4), 503–518 (2002)

    Article  Google Scholar 

  13. Tabuada, P.: Event-triggered real-time scheduling of stabilizing control tasks. IEEE Trans. Autom. Control 52(9), 1680–1685 (2007)

    Article  MathSciNet  Google Scholar 

  14. Heemels, W.P.M.H., Donkers, M.C.F., Teel, A.R.: Periodic event-triggered control for linear systems. IEEE Trans. Autom. Control 58(4), 847–861 (2013)

    Article  MathSciNet  Google Scholar 

  15. Garcia, E., Antsaklis, P.J.: Model-based event-triggered control for systems with quantization and time-varying network delays. IEEE Trans. Autom. Control 58(2), 422–434 (2013)

    Article  MathSciNet  Google Scholar 

  16. Mazo, M., Tabuada, P.: Decentralized event-triggered control over wireless sensor/actuator networks. IEEE Trans. Autom. Control 56(10), 2456–2461 (2011)

    Article  MathSciNet  Google Scholar 

  17. Dhar, N.K., Verma, N.K., Behera, L.: Adaptive Critic based Event-Triggered Control for HVAC system. In: IEEE Transactions on Industrial Informatics (Early Access), https://doi.org/10.1109/TII.2017.2725899, 2017

  18. Lin, C., Zeadally, S., Chen, T., Chang, C.: Enabling cyber physical systems with wireless sensor networking technologies. Int. J. Distributed Sens. Netw. 8(5), (2012)

    Article  Google Scholar 

  19. Lee, S., Lee, K.G., Lee, M.H., Harashima, F.: Integration of mobile vehicles for automated material handling using profibus and IEEE 802.11 networks. IEEE Trans. Ind. Electron. 49(3), 693–701 (2002)

    Article  Google Scholar 

  20. Lozoya, C., Mart, P., Velasco, M., Fuertes, J.M.: Effective real-time wireless control of an autonomous guided vehicle, 2007 IEEE International Symposium on Industrial Electronics, Vigo, pp. 2876–2881, June 2007

    Google Scholar 

  21. Pang, Z.H., Liu, G.P., Zhou, D., Chen, M.: Output tracking control for networked systems: a model-based prediction Approach. IEEE Trans. Ind. Electron. 61(9), 4867–4877 (2014)

    Article  Google Scholar 

  22. Verma, N.K., Dhar, N.K., Kar, A., Dev, R., Nawaz, S.S.F., Salour, A.: Internet of Things based framework for trajectory tracking control. In: IEEE 3rd World Forum Internet Things (WF-IoT), Reston, VA, pp. 265–270, 2016

    Google Scholar 

  23. Mehrjerdi, H., Saad, M.: Dynamic tracking control of mobile robot using exponential sliding mode. In: IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society, pp. 406–411, 2010

    Google Scholar 

  24. Solea, R., Cernega, D.: Sliding mode control for trajectory tracking problem - performance evaluation. In: Artificial Neural Networks ICANN, pp. 865–874, 2009

    Chapter  Google Scholar 

  25. Mu, J., Yan, X., Spurgeon, S.K., Mao, Z. : Trajectory tracking control of a two-wheeled mobile robot using sliding mode techniques. In: 34th Chinese., Control Conference (CCC), pp. 3307–3312, 2015

    Google Scholar 

  26. Rajurkar, S.D., Kar, A.K., Goswami, S., Verma, N.K.: Optimal Path Estimation and Tracking for an Automated Vehicle using GA optimized Fuzzy Controller. In: Proceedings IEEE International Conference on Industrial and Information Systems (ICIIS), IIT Roorkee, India, 2016

    Google Scholar 

  27. Verma, N.K., Nama, P., Kumar, G., Siddhant, A., Ocean, Raj, A., Dhar, N.K., Salour, A.: Vision based object follower automated guided vehicle using compressive tracking and stereo-vision. In: IEEE Bombay Section Symposium (IBSS-2015), Sep. 2015

    Google Scholar 

  28. Verma, N.K., Nama, P., Kumar, G., Siddhant, A., Raj, A., Dhar, N.K., Salour, A.: Vision based object follower automated guided vehicle using compressive tracking and stereo-vision. In: IEEE Bombay Section Symp., pp. 1–6, 2015

    Google Scholar 

  29. Dhar, N.K., Verma, N.K., Behera, L., Jamshidi, M.M.: On an integrated approach to networked climate control of a smart home. IEEE Syst. J. 12(2), 1317–1328 (2018)

    Article  Google Scholar 

  30. Dhar, N.K., Verma, N.K., Behera, L.: Intelligent controller design coupled in a communication framework for a networked HVAC system. In: IEEE World Congr. Comput. Intell., July 24–29 2016, Vancouver, Canada (WCCI 2016), pp. 1–7, 2016

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narendra Kumar Dhar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kar, A.K., Dhar, N.K., Verma, N.K. (2019). Event-Triggered Sliding Mode Control Based Trajectory Tracking in a Cyber-Physical Space. In: Verma, N., Ghosh, A. (eds) Computational Intelligence: Theories, Applications and Future Directions - Volume I. Advances in Intelligent Systems and Computing, vol 798. Springer, Singapore. https://doi.org/10.1007/978-981-13-1132-1_16

Download citation

Publish with us

Policies and ethics