Skip to main content

Event-Triggered Control for Trajectory Tracking by Robotic Manipulator

  • Conference paper
  • First Online:
Computational Intelligence: Theories, Applications and Future Directions - Volume I

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 798))

Abstract

A day-by-day increase in applications of robotic manipulators has led to an era when a variety of tasks are expected from a system with the consumption of least possible resources. One recent application is in cyber-physical space. Resource limitation is a problem, particularly when working in a cyber-physical architecture. With this in mind, aperiodic control techniques were introduced and developed upon. This was based on the fact that there always exists some redundancy in control signal generation which can be avoided. In this paper, we have introduced an event-triggered control technique for trajectory tracking by robotic manipulators. This technique is superior to uniform-interval controller as control computations are done only at instances when the system needs attention. This event-triggered approach is applied to a learning-based incremental PID controller to demonstrate the simplicity in application. Simulation results show the effectiveness of the proposed methodology for trajectory tracking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, Y., Wang, S., Wei, Q., Tan, M., Zhou, C., Yu, J.: Development of an underwater manipulator and its free-floating autonomous operation. IEEE/ASME Trans. Mechatron. 21(2), 815–824 (2016)

    Article  Google Scholar 

  2. Kim, D.J., Wang, Z., Paperno, N., Behal, A.: System design and implementation of ucf-manus x2014; an intelligent assistive robotic manipulator. IEEE/ASME Trans. Mechatron. 19(1): 225–237 (2014)

    Article  Google Scholar 

  3. Zanchettin, A.M., Bascetta, L., Rocco, P.: Achieving humanlike motion: resolving redundancy for anthropomorphic industrial manipulators. IEEE Robot. Autom. Mag. 20(4), 131138 (2013)

    Article  Google Scholar 

  4. Karayiannidis, Y., Smith, C., Barrientos, F.E.V., Ogren, P., Kragic, D.: An adaptive control approach for opening doors and drawers under uncertainties. IEEE Trans. Robot. 32(1), 161175 (2016)

    Article  Google Scholar 

  5. Ajwad, S.A., Ullah, M.I., Khelifa, B., Iqbal, J.: A comprehensive state-of-the-art on control of industrial articulated robots. J. Balkan Tribological Assoc. 20(4), 499–521 (2014)

    Google Scholar 

  6. Kar, A.K., Dhar, N.K., Chandola, R., Nawaz, S.S.F., Verma, N.K.: Trajectory tracking by automated guided vehicle using GA optimized sliding mode control. In: 11th International Conference on Industrial and Information Systems (ICIIS) (2016). https://doi.org/10.1109/ICIINFS.2016.8262910

  7. Kar, A.K., Dhar, N.K., Nawaz, S.S.F., Chandola, R., Verma, N.K.: Automated guided vehicle navigation with obstacle avoidance in normal and guided environments. In: 11th International Conference on Industrial and Information Systems (ICIIS) (2016). https://doi.org/10.1109/ICIINFS.2016.8262911

  8. Rajurkar, S.D., Kar, A.K., Goswami, S., Verma, N.K.: Optimal path estimation and tracking for an automated vehicle using GA optimized fuzzy controller. In: 11th International Conference on Industrial and Information Systems (ICIIS) (2016). https://doi.org/10.1109/ICIINFS.2016.8262967

  9. Craig, J.J.: Introduction to Robotics: Mechanics and Control. Addison-Wesley Longman, Boston (1989)

    Google Scholar 

  10. Spong, M.W., Vidyasagar, M.: Robot dynamics and control. Wiley, Hoboken (2008)

    Google Scholar 

  11. Kelly, R.: Global positioning of robot manipulators via PD control plus a class of nonlinear integral actions. IEEE Trans. Autom. Control 47(7), 934–938 (1998)

    Article  MathSciNet  Google Scholar 

  12. Khalil, H.K., Grizzle, J.W.: Nonlinear Systems, vol. 3. Prentice hall, Upper Saddle River (1996)

    Google Scholar 

  13. Mustafa, A., Tyagi, C., Verma, N.K.: Inverse kinematics evaluation for robotic manipulator using support vector regression and Kohonen self organizing map. In: IEEE International Conference on Industrial and Information Systems (ICIIS), India (In proceedings) (2016)

    Google Scholar 

  14. Utkin, V.: Sliding mode control design principles and applications to electric drives. IEEE Trans. Ind. Electron. 40(1), 23–36 (1993)

    Article  Google Scholar 

  15. Hung, J., Gao, W., Hung, J.: Variable structure control: a survey. IEEE Trans. Ind. Electron. 40(1), 2–22 (1993)

    Article  Google Scholar 

  16. Verma, N.K., Dhar, N.K., Kar, A.K., Dev, R., Nawaz, S.S.F., Salour, A.: Internet of things based framework for trajectory tracking control. IEEE World Forum on Internet of Things. USA (2016). https://doi.org/10.1109/WF-IoT.2016.7845460

  17. Sage, H.G., De, Mathelin M.F., Ostertag, E.: Robust control of robot manipulators: a survey. Int. J. Control 72(16), 1498–1522 (1999)

    Article  MathSciNet  Google Scholar 

  18. Hu, Q., Xiao, B.: Robust adaptive backstepping attitude stabilization and vibration reduction of flexible spacecraft subject to actuator saturation. J. Vib. Control 17(11), 1657–1671 (2011)

    Article  MathSciNet  Google Scholar 

  19. Chen, G., Lewis, F.L.: Distributed adaptive tracking control for synchronization of unknown networked Lagrangian systems. IEEE Trans. Syst. Man Cybern. 41(3), 805–816 (2011)

    Article  Google Scholar 

  20. Mustafa, A., Dhar, N.K., Agarwal, P., Verma, N.K.: Adaptive backstepping sliding mode control based on nonlinear disturbance observer for trajectory tracking of robotic manipulator. In: 2nd International Conference on Control and Robotics Engineering (ICCRE) (2017). https://doi.org/10.1109/ICCRE.2017.7935036

  21. Ullah, M.I., Ajwad, S.A., Irfan, M., Iqbal, J.: Non-linear control law for articulated serial manipulators: simulation augmented with hardware implementation. Elektronika Ir Elektrotechnika 22(1), 3–7 (2016)

    Article  Google Scholar 

  22. Dhar, N.K., Verma, N.K., Behera, L., Jamshidi Mo, M.: On an integrated approach to networked climate control of a smart home. IEEE Syst. J. 12(2), 1317–1328 (2018)

    Article  Google Scholar 

  23. Dhar, N.K., Verma, N.K., Behera, L.: Evolutionary algorithm tuned fuzzy PI controller for a networked HVAC system. Recent developments and the new direction in soft-computing foundations and applications. Studies in Fuzziness and Soft Computing, vol. 361, pp. 319–334, Springer, Cham ( 2018). https://doi.org/10.1007/978-3-319-75408-6_25

    Chapter  Google Scholar 

  24. Dhar, N.K., Verma, N.K., Behera, L.: Intelligent controller design coupled in a communication framework for a networked HVAC system. In: IEEE Congr. Evol. Comput., pp. 5325–5332, Vancouver, BC, Canada (2016). https://doi.org/10.1109/CEC.2016.7748367

  25. Yook, J., Tilbury, D., Soparkar, N.: Trading computation for bandwidth: reducing communication in distributed control systems using state estimators. IEEE Trans. Control Syst. Technol. 10(4), 503–518 (2002)

    Article  Google Scholar 

  26. Tabuada, P.: Event-triggered real-time scheduling of stabilizing control tasks. IEEE Trans. Autom. Control 52(9), 1680–1685 (2007)

    Article  MathSciNet  Google Scholar 

  27. Dhar, N.K., Verma, N.K., Behera, L.: Adaptive critic based event-triggered control for HVAC system. IEEE Transactions on Industrial Informatics. 14(1), 171–188 (2018)

    Article  Google Scholar 

  28. Li, H., Chen, Z., Wu, L., Wu, L., Lam, H.-K.: Event-triggered control for nonlinear systems under unreliable communication links. IEEE Trans. Fuzzy Syst. 25(4), 813–824 (2016)

    Article  Google Scholar 

  29. Ma, L., Wang, Z., Lam, H.-K.: Event-triggered mean-square consensus control for time-varying Stochastic multi-agent system with sensor saturations. IEEE Trans. Autom. Control 62(7), 3524–3531 (2016)

    Article  MathSciNet  Google Scholar 

  30. Zhang, Q., Zhao, D., Zhu, Y.: Event-triggered H control for continuous-time nonlinear system via concurrent learning. IEEE Trans. Syst. Man Cybern.: Syst. 47(7), 1071–1081 (2016)

    Article  Google Scholar 

  31. Dong, L., Zhong, X., Sun, C., He, H.: Adaptive event-triggered control based on Heuristic dynamic programming for nonlinear discrete-time systems. IEEE Trans. Neural Netw. Learn. Syst. 28(7), 1594–1605 (2016)

    Article  MathSciNet  Google Scholar 

  32. Tripathy, N.S., Kar, I.N., Paul, K.: An event-triggered based robust control of robot manipulator. In: 13th International Conference on Control Automation Robotics & Vision (ICARCV) (2014). https://doi.org/10.1109/ICARCV.2014.7064343

  33. Baldi, P.: Gradient descent learning algorithm overview. IEEE Trans. Neural Netw. 6(1), 182–195 (1995)

    Article  Google Scholar 

  34. Arzen, K.E.: A Simple event-based PID controller. In: 14th IFAC World Congress (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narendra Kumar Dhar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kamboj, A., Dhar, N.K., Verma, N.K. (2019). Event-Triggered Control for Trajectory Tracking by Robotic Manipulator. In: Verma, N., Ghosh, A. (eds) Computational Intelligence: Theories, Applications and Future Directions - Volume I. Advances in Intelligent Systems and Computing, vol 798. Springer, Singapore. https://doi.org/10.1007/978-981-13-1132-1_13

Download citation

Publish with us

Policies and ethics