Skip to main content

Gravitational Waves

  • Chapter
  • First Online:
  • 147k Accesses

Part of the book series: Undergraduate Lecture Notes in Physics ((ULNP))

Abstract

Gravitational waves are a hot topic today. It is now possible to directly detect gravitational waves from astrophysical sources, and we expect an impressive amount of completely new data in the next 10–20 years. The aim of this chapter is to provide an introductory overview on the topic. Contrary to the other chapters of the book, the discussion is not at a purely theoretical level, and some sections are devoted to observations and experimental facilities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    One has to remove the effect due to the relative acceleration between us and the pulsar caused by the differential rotation of the Galaxy.

  2. 2.

    \(h_{\mu \nu }\) transforms as a tensor under Lorentz transformations. If the transformation is \(x^\mu \rightarrow x'^\mu = \varLambda ^\mu _\nu x^\nu \), we have

    $$\begin{aligned} g_{\mu \nu } = \eta _{\mu \nu } + h_{\mu \nu } \rightarrow g'_{\mu \nu } = \varLambda _\mu ^\alpha \varLambda _\nu ^\beta \left( \eta _{\alpha \beta } + h_{\alpha \beta }\right) = \eta _{\mu \nu } + \varLambda _\mu ^\alpha \varLambda _\nu ^\beta h_{\alpha \beta } \, , \end{aligned}$$
    (12.21)

    and we see that \(h'_{\mu \nu } = \varLambda _\mu ^\alpha \varLambda _\nu ^\beta h_{\alpha \beta }\).

References

  1. B.P. Abbott et al., LIGO scientific and virgo collaborations. Phys. Rev. Lett. 116, 061102 (2016), arXiv:1602.03837 [gr-qc]

  2. L. Barack, C. Cutler, Phys. Rev. D 69, 082005 (2004). [gr-qc/0310125]

    Article  ADS  Google Scholar 

  3. L. Barack, C. Cutler, Phys. Rev. D 75, 042003 (2007). [gr-qc/0612029]

    Article  ADS  Google Scholar 

  4. J.R. Gair, K. Glampedakis, Phys. Rev. D 73, 064037 (2006). [gr-qc/0510129]

    Article  ADS  MathSciNet  Google Scholar 

  5. K. Glampedakis, Class. Quant. Grav. 22, S605 (2005). [gr-qc/0509024]

    Article  ADS  MathSciNet  Google Scholar 

  6. K. Glampedakis, S. Babak, Class. Quant. Grav. 23, 4167 (2006). [gr-qc/0510057]

    Article  ADS  Google Scholar 

  7. K. Glampedakis, S.A. Hughes, D. Kennefick, Phys. Rev. D 66, 064005 (2002). [gr-qc/0205033]

    Article  ADS  MathSciNet  Google Scholar 

  8. E. Gourgoulhon, S. Bonazzola, Gravitational waves from isolated neutron stars, in Gravitational Waves: Sources and Detectors, pp. 51–60 (World Scientific, Singapore, 1997). [astro-ph/9605150]

    Google Scholar 

  9. G. Hobbs et al., Class. Quant. Grav. 27, 084013 (2010), arXiv:0911.5206 [astro-ph.SR]

  10. A.N. Lommen, Rept. Prog. Phys. 78, 124901 (2015)

    Article  ADS  Google Scholar 

  11. C.J. Moore, R.H. Cole, C.P.L. Berry, Class. Quant. Grav. 32, 015014 (2015), arXiv:1408.0740 [gr-qc]

  12. F.D. Ryan, Phys. Rev. D 52, 5707 (1995)

    Article  ADS  Google Scholar 

  13. J.M. Weisberg, Y. Huang, Astrophys. J. 829, 55 (2016), arXiv:1606.02744 [astro-ph.HE]

  14. J. Weber, Phys. Rev. Lett. 22, 1320 (1969)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cosimo Bambi .

Problem

Problem

12.1

Derive the estimate of the maximum gravitational wave frequency for black holes with mass \(M = 10^6\) \(M_\odot \) and \(10^9\) \(M_\odot \) from Eq. (12.110) and compare the result with Fig. 12.4.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bambi, C. (2018). Gravitational Waves. In: Introduction to General Relativity. Undergraduate Lecture Notes in Physics. Springer, Singapore. https://doi.org/10.1007/978-981-13-1090-4_12

Download citation

Publish with us

Policies and ethics