Skip to main content

Starch-Lipid and Starch-Protein Complexes and Their Application

  • Chapter
  • First Online:

Abstract

Amylose is a linear polysaccharide derived from D-glucopyranose units from α-1,4-glycosidic linkages, which can form complexes with some inorganic or organic groups to form helical introns. In this chapter, starch copolymers and the creation, properties, and applications of starch-protein and starch-lipid complexes were introduced. Because of the low toxicity, excellent biocompatibility, and solubility, amylose/α-linoleic acid/β-lactoglobulin triplex has attracted significant interest in food nutraceuticals or functional compounds in food delivery systems. Cornstarch was washed with n-butanol and isoamyl alcohol to remove impurities, followed by vacuum drying to obtain highly pure amylose. The amylose was dissolved by heating and stirring. α-Linoleic acid dissolved in absolute ethanol was added first and stirred prior to the addition of β-lactoglobulin aqueous solution. After stirring, the mixture was cooled to room temperature and filtered and vacuum-dried to prepare the triplex complex. The resulting nanoparticles had exhibited very good stability. Then, in order to understand the mechanism of the self-assembling actions of such a ternary system (interaction among amylose, β-lactoglobulin, and α-linoleic acid) deeply, all-atom molecular dynamics simulations were performed to analyze the self-assembling of the three components by the Gromacs software. Molecular dynamics simulations confirmed the importance of dynamic structural changes during stable complex formation of ternary nanoparticles made from maize amylose/β-lactoglobulin/α-linoleic acid. These results provided valuable insight into the formation of amphipathic ternary nanoparticle structure at the atomic level. Amylose in complex with lipids and proteins is of great importance to the protection of bioactive or aromatic compounds by its ability to increase solubility and bioavailability. These findings indicate that starch-lipid and starch-protein complexes have broad applications in the food, cosmetics, and pharmaceutical industries.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Brisson J, Chanzy H, Winter WT. The crystal and molecular structure of VH amylose by electron diffraction analysis. Int J Biol Macromol. 1991;13(1):31–9.

    Article  CAS  Google Scholar 

  2. Godet MC, Buléon A, Tran V, Colonna P. Structural features of fatty acid-amylose complexes. Carbohydr Polym. 1993;21(2–3):91–5.

    Article  CAS  Google Scholar 

  3. Godet MC, Bizot H, Buléon A. Crystallization of amylose-fatty acid complexes prepared with different amylose chain lengths. Carbohydr Polym. 1995;27(1):47–52.

    Article  CAS  Google Scholar 

  4. Le Bail P, Bizot H, Pontoire B, Buléon A. Polymorphic transitions of amylose-ethanol crystalline complexes induced by moisture exchanges. Starch Stärke. 1995;47(6):229–32.

    Article  Google Scholar 

  5. Le Bail P, Rondeau C, Buléon A. Structural investigation of amylose complexes with small ligands: helical conformation, crystalline structure and thermostability. Int J Biol Macromol. 2005;35(1):1–7.

    Article  Google Scholar 

  6. Cardoso MB, Putaux JL, Nishiyama Y, Helbert W, Hytch M, Silveira NP, Chanzy H. Single crystals of V-amylose complexed with alpha-naphthol. Biomacromolecules. 2007;8(4):1319–26.

    Article  CAS  Google Scholar 

  7. Mira I, Persson K, Villwock VK. On the effect of surface active agents and their structure on the temperature-induced changes of normal and waxy wheat starch in aqueous suspension. Part I. Pasting and calorimetric studies. Carbohydr Polym. 2007;68(4):665–78.

    Article  CAS  Google Scholar 

  8. Lauro M, Poutanen K, Forssell P. Effect of partial gelatinization and lipid addition on α-amylolysis of barley starch granules. Cereal Chem J. 2000;77(5):595–601.

    Article  CAS  Google Scholar 

  9. Eliasson AC, Carlson TLG, Larsson K. Some effects of starch lipids on the thermal and rheological properties of wheat starch. Starch Stärke. 1981;33(4):130–4.

    Article  CAS  Google Scholar 

  10. Hoover R, Hadziyev D. Characterization of potato starch and its monoglyceride complexes. Starch Stärke. 1981;33(9):290–300.

    Article  CAS  Google Scholar 

  11. Helbert W, Chanzy H. Single crystals of V amylose complexed with n-butanol or n-pentanol: structural features and properties. Int J Biol Macromol. 1994;16(4):207–13.

    Article  CAS  Google Scholar 

  12. Yang Y, Gu Z, Xu H, Li F, Zhang G. Interaction between amylose and beta-cyclodextrin investigated by complexing with conjugated linoleic acid. J Agric Food Chem. 2010;58(9):5620–4.

    Article  CAS  Google Scholar 

  13. Putaux J-L, Nishiyama Y, Mazeau K, Morin M, Cardoso MB, Chanzy H. Helical conformation in crystalline inclusion complexes of V-amylose: a historical perspective. Macromol Symp. 2011;303(1):1–9.

    Article  CAS  Google Scholar 

  14. Ades H, Kesselman E, Ungar Y, Shimoni E. Complexation with starch for encapsulation and controlled release of menthone and menthol. LWT Food Sci Technol. 2012;45(2):277–88.

    Article  CAS  Google Scholar 

  15. Nakamura Y, Yuki K, Park S-Y, Ohya T. Carbohydrate metabolism in the developing endosperm of rice grains. Plant Cell Physiol. 1989;30(6):833–9.

    Article  CAS  Google Scholar 

  16. Roger P, Colonna P. Molecular weight distribution of amylose fractions obtained by aqueous leaching of corn starch. Int J Biol Macromol. 1996;19(1):51–61.

    Article  CAS  Google Scholar 

  17. Fertig CC, Podczeck F, Jee RD, Smith MR. Feasibility study for the rapid determination of the amylose content in starch by near-infrared spectroscopy. Eur J Pharm Sci. 2004;21(2–3):155–9.

    Article  CAS  Google Scholar 

  18. Polaczek E, Starzyk F, Maleńki K, Tomasik P. Inclusion complexes of starches with hydrocarbons. Carbohydr Polym. 2000;43(3):291–7.

    Article  CAS  Google Scholar 

  19. Nuessli J, Sigg B, Conde-Petit B, Escher F. Characterization of amylose-flavour complexes by DSC and X-ray diffraction. Food Hydrocoll. 1997;11(1):27–34.

    Article  CAS  Google Scholar 

  20. Tapanapunnitikul O, Chaiseri S, Peterson DG, Thompson DB. Water solubility of flavor compounds influences formation of flavor inclusion complexes from dispersed high-amylose maize starch. J Agric Food Chem. 2008;56(1):220–6.

    Article  CAS  Google Scholar 

  21. López CA, De Vries AH, Marrink SJ. Amylose folding under the influence of lipids. Carbohydr Res. 2012;364:1–7.

    Article  Google Scholar 

  22. Heinemann C, Conde-Petit B, Nuessli J, Escher F. Evidence of starch inclusion complexation with lactones. J Agric Food Chem. 2001;49(3):1370–6.

    Article  CAS  Google Scholar 

  23. Karkalas J, Ma S, Morrison WR, Pethrick RA. Some factors determining the thermal properties of amylose inclusion complexes with fatty acids. Carbohydr Res. 1995;268(2):233–47.

    Article  CAS  Google Scholar 

  24. Buléon A, Delage MM, Brisson J, Chanzy H. Single crystals of V amylose complexed with isopropanol and acetone. Int J Biol Macromol. 1990;12(1):25–33.

    Article  Google Scholar 

  25. Zabar S, Lesmes U, Katz I, Shimoni E, Bianco-Peled H. Studying different dimensions of amylose–long chain fatty acid complexes: molecular, nano and micro level characteristics. Food Hydrocoll. 2009;23(7):1918–25.

    Article  CAS  Google Scholar 

  26. Tusch M, Krueger J, Fels G. Structural stability of V-amylose helices in water-DMSO mixtures analyzed by molecular dynamics. J Chem Theory Comput. 2011;7(9):2919–28.

    Article  CAS  Google Scholar 

  27. Quiñonero D, Tomàs S, Frontera A, Garau C, Ballester P, Costa A, Deyà PM. OPLS all-atom force field for squaramides and squaric acid. Chem Phys Lett. 2001;350(3):331–8.

    Article  Google Scholar 

  28. Kony D, Damm W, Stoll S, Van Gunsteren WF. An improved OPLS-AA force field for carbohydrates. J Comput Chem. 2002;23(15):1416–29.

    Article  CAS  Google Scholar 

  29. Daura X, Gademann K, Jaun B, Seebach D, Vangunsteren WF, Mark AE. Peptide folding: when simulation meets experiment. Angew Chem Int Ed. 1999;38(1–2):236–40.

    Article  CAS  Google Scholar 

  30. Wang X-Y, Zhang L, Wei X-H, Wang Q. Molecular dynamics of paclitaxel encapsulated by salicylic acid-grafted chitosan oligosaccharide aggregates. Biomaterials. 2013;34(7):1843–51.

    Article  CAS  Google Scholar 

  31. Fedorov MV, Goodman JM, Kolombet VV, Schumm S, Socorro IM. Conformational changes of trialanine in sodium halide solutions: an in silico study. J Mol Liq. 2009;147(1–2):117–23.

    Article  CAS  Google Scholar 

  32. Sekhon BS. Food nanotechnology – an overview. Nanotechnol Sci Appl. 2010;3:1–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang G, Maladen MD, Hamaker BR. Detection of a novel three component complex consisting of starch, protein, and free fatty acids. J Agric Food Chem. 2003;51(9):2801–5.

    Article  CAS  Google Scholar 

  34. Zhang G, Maladen M, Campanella OH, Hamaker BR. Free fatty acids electronically bridge the self-assembly of a three-component nanocomplex consisting of amylose, protein, and free fatty acids. J Agric Food Chem. 2010;58(16):9164–70.

    Article  CAS  Google Scholar 

  35. Lee O-S, Cho V, Schatz GC. Modeling the self-assembly of peptide amphiphiles into fibers using coarse-grained molecular dynamics. Nano Lett. 2012;12(9):4907–13.

    Article  CAS  Google Scholar 

  36. Uhrinova S, Smith MH, Jameson GB, Uhrin D, Sawyer L, Barlow PN. Structural changes accompanying pH-induced dissociation of the beta-lactoglobulin dimer. Biochemistry. 2000;39(13):3565–74.

    Article  CAS  Google Scholar 

  37. Lemkul JA, Allen WJ, Bevan DR. Practical considerations for building GROMOS-compatible small-molecule topologies. J Chem Inf Model. 2010;50(12):2221–35.

    Article  CAS  Google Scholar 

  38. Damm W, Frontera A, Tirado-Rives J, Jorgensen WL. OPLS all-atom force field for carbohydrates. J Comput Chem. 1997;18(16):1955–70.

    Article  CAS  Google Scholar 

  39. Felts AK, Harano Y, Gallicchio E, Levy RM. Free energy surfaces of β-hairpin and α-helical peptides generated by replica exchange molecular dynamics with the AGBNP implicit solvent model. Proteins: Struct Funct Bioinformas. 2004;56(2):310–21.

    Article  CAS  Google Scholar 

  40. Wang H, Zhang H, Liu C, Yuan S. Coarse-grained molecular dynamics simulation of self-assembly of polyacrylamide and sodium dodecyl sulfate in aqueous solution. J Colloid Interface Sci. 2012;386(1):205–11.

    Article  CAS  Google Scholar 

  41. Cheng X, Cui G, Hornak V, Simmerling C. Modified replica exchange simulation methods for local structure refinement. J Phys Chem B. 2005;109(16):8220–30.

    Article  CAS  Google Scholar 

  42. Wulff G, Avgenaki G, Guzmann MSP. Molecular encapsulation of flavours as helical inclusion complexes of amylose. J Cereal Sci. 2005;41(3):239–49.

    Article  CAS  Google Scholar 

  43. Gunning YM, Gunning PA, Kemsley EK, Parker R, Ring SG, Wilson RH, Blake A. Factors affecting the release of flavor encapsulated in carbohydrate matrixes. J Agric Food Chem. 1999;47(12):5198–205.

    Article  CAS  Google Scholar 

  44. Feng T, Liu F, Wang X, Zhuang H, Ye R, Rong Z, Liu Y. Evaluation of different analysis methods for the encapsulation efficiency of amylose inclusion compound. Int J Polym Sci. 2015;2015:1–8.

    Article  CAS  Google Scholar 

  45. Condepetit B, Escher F, Nuessli J. Structural features of starch-flavor complexation in food model systems. Trends Food Sci Technol. 2006;17(5):227–35.

    Article  CAS  Google Scholar 

  46. Jouquand C, Ducruet V, Bail PL. Formation of amylose complexes with C6-aroma compounds in starch dispersions and its impact on retention. Food Chem. 2006;96(3):461–70.

    Article  CAS  Google Scholar 

  47. Ozturk S, Koksel H, Kahraman K, Pkw N. Effect of debranching and heat treatments on formation and functional properties of resistant starch from high-amylose corn starches. Eur Food Res Technol. 2009;229(1):115–25.

    Article  CAS  Google Scholar 

  48. Arvisenet G, Le Bail P, Voilley A, Cayot N. Influence of physicochemical interactions between amylose and aroma compounds on the retention of aroma in food-like matrices. J Agric Food Chem. 2015;50(24):7088.

    Article  Google Scholar 

  49. Savjani KT, Gajjar AK, Savjani JK. Drug solubility: importance and enhancement techniques. Isrn Pharm. 2012;2012(3):195727.

    PubMed  PubMed Central  Google Scholar 

  50. Meriskoliversidge EM, Liversidge GG. Drug nanoparticles: formulating poorly water-soluble compounds. Toxicol Pathol. 2008;36(1):43.

    Article  CAS  Google Scholar 

  51. Zhang G, Hamaker BR. Starch-free fatty acid complexation in the presence of whey protein. Carbohydr Polym. 2004;55(4):419–24.

    Article  CAS  Google Scholar 

  52. Shah A, Zhang G, Hamaker BR, Campanella OH. Rheological properties of a soluble self-assembled complex from starch, protein and free fatty acids. J Food Eng. 2011;105(3):444–52.

    Article  CAS  Google Scholar 

  53. Liu J, Fei LC, Maladen M, Hamaker BR, Zhang GY. Iodine binding property of a ternary complex consisting of starch, protein, and free fatty acids. Carbohydr Polym. 2009;75(2):351–5.

    Article  CAS  Google Scholar 

  54. Clays K, Olbrechts G, Munters T, Persoons A, Kim OK, Choi LS. Enhancement of the molecular hyperpolarizability by a supramolecular amylose-dye inclusion complex, studied by hyper-Rayleigh scattering with fluorescence suppression. Chem Phys Lett. 1998;293(5–6):337–42.

    Article  CAS  Google Scholar 

  55. Bhopatkar D, Tao F, Feng C, Zhang G, Carignano M, Park SH, Zhuang H, Campanella OH, Hamaker BR. Self-assembled nanoparticle of common food constituents that carries a sparingly soluble small molecule. J Agric Food Chem. 2015;63(17):4312.

    Article  CAS  Google Scholar 

  56. Tao F, Ke W, Liu F, Ran Y, Xiao Z, Zhuang H, Xu Z. Structural characterization and bioavailability of ternary nanoparticles consisting of amylose, α-linoleic acid and β-lactoglobulin complexed with naringin. Int J Biol Macromol. 2017;99:365–74.

    Article  Google Scholar 

  57. Wang J, Ma W, Tu P. The mechanism of self-assembled mixed micelles in improving curcumin oral absorption: in vitro and in vivo. Colloids Surf B Biointerfaces. 2015;133:108.

    Article  CAS  Google Scholar 

  58. Tan C, Xie J, Zhang X, Cai J, Xia S. Polysaccharide-based nanoparticles by chitosan and gum arabic polyelectrolyte complexation as carriers for curcumin. Food Hydrocoll. 2016;57:236–45.

    Article  CAS  Google Scholar 

  59. Andrieux K, Forte L, Lesieur S, Paternostre M, Ollivon M, Grabielle-Madelmont C. Solubilisation of dipalmitoylphosphatidylcholine bilayers by sodium taurocholate: a model to study the stability of liposomes in the gastrointestinal tract and their mechanism of interaction with a model bile salt. Eur J Pharm Biopharm. 2009;71(2):346.

    Article  CAS  Google Scholar 

  60. Milojevic S, Newton JM, Cummings JH, Gibson GR, Botham RL, Ring SG, Stockham M, Allwood MC. Amylose as a coating for drug delivery to the colon: preparation and in vitro evaluation using 5-aminosalicylic acid pellets. J Control Release. 1996;38(1):75–84.

    Article  CAS  Google Scholar 

  61. Nykanen P, Lempaa S, Aaltonen M, Jurjenson H, Veski P, Marvola M. Citric acid as excipient in multiple-unit enteric-coated tablets for targeting drugs on the colon. Int J Pharm. 2001;229(1–2):155–62.

    Article  CAS  Google Scholar 

  62. Zhang L, Cheng H, Zheng C, Dong F, Man S, Dai Y, Yu P. Structural and release properties of amylose inclusion complexes with ibuprofen. J Drug Deliv Sci Technol. 2016;31:101–7.

    Article  CAS  Google Scholar 

  63. Dimantov A, Greenberg M, Kesselman E, Shimoni E. Study of high amylose corn starch as food enteric coating in a microcapsule model system. Innov Food Sci Emerg Technol. 2004;5(1):93–100.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Feng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Feng, T. et al. (2018). Starch-Lipid and Starch-Protein Complexes and Their Application. In: Jin, Z. (eds) Functional Starch and Applications in Food. Springer, Singapore. https://doi.org/10.1007/978-981-13-1077-5_7

Download citation

Publish with us

Policies and ethics