Skip to main content

Nano-sized Starch: Preparations and Applications

  • Chapter
  • First Online:
Functional Starch and Applications in Food

Abstract

Nano-sized starch is a kind of organic nanoparticles prepared from starch with the size of 50−200 nm, which has been extensively studied these years due to its characteristics of renewability, biocompatibility, low density, and high biodegradability. It can be roughly divided into the categories of starch nanoparticles (SNs) and starch nanocrystals (SNCs) based on its preparation methods and properties; a special distinction is emphasized in this chapter in order to get a better interpretation. Physical, chemical, enzymatic, or the combined methods are involved in the preparation of nano-sized starch and are classified into the top-down and bottom-up protocols, respectively. As the size of starch granules is decreased down to the nanometer scale, both the specific surface area and total surface energy increase. Therefore, a highly reactive surface with a greater number of hydroxyl groups is ready for modification so that new characteristics can be introduced. The strategies of chemical derivatization, “grafting onto,” “grafting from,” and enzyme modification are adopted to improve the dispersity, hydrophobicity, compatibility, or crystallinity of the nano-sized starch. Nano-sized starch or the modified nano-sized starch shows great importance in the applications of fillers, emulsion stabilizer, and delivery vehicles. Other applications such as adsorbents, binders, thermo-responsive materials, templates, biosensors, and biomarkers are receiving increasing attention and also reviewed accordingly. Nevertheless, further research is needed, especially regarding industrial-scale production and the dispersibility and re-dispersibility of powdered products of nano-sized starch.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dufresne A. Comparing the mechanical properties of high performances polymer nanocomposites from biological sources. J Nanosci Nanotechnol. 2006;6(2):322–30.

    Article  CAS  PubMed  Google Scholar 

  2. Šturcová A, Davies GR, Eichhorn SJ. Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules. 2005;6(2):1055–61.

    Article  PubMed  CAS  Google Scholar 

  3. Angellier H, Molina-Boisseau S, Belgacem MN, et al. Surface chemical modification of waxy maize starch nanocrystals. Langmuir. 2005;21(6):2425–33.

    Article  CAS  PubMed  Google Scholar 

  4. Putaux JL, Molina-Boisseau S, Momaur T, et al. Platelet nanocrystals resulting from the disruption of waxy maize starch granules by acid hydrolysis. Biomacromolecules. 2003;4(5):1198–202.

    Article  CAS  PubMed  Google Scholar 

  5. Wei B, Zhang B, Sun B, et al. Aqueous re-dispersibility of starch nanocrystal powder improved by sodium hypochlorite oxidation. Food Hydrocoll. 2016;52:29–37.

    Article  CAS  Google Scholar 

  6. Ren L, Wang Q, Yan X, et al. Dual modification of starch nanocrystals via crosslinking and esterification for enhancing their hydrophobicity. Food Res Int. 2016;87:180–8.

    Article  CAS  PubMed  Google Scholar 

  7. Lecorre D, Vahanian E, Dufresne A, et al. Enzymatic pretreatment for preparing starch nanocrystals. Biomacromolecules. 2012;13(1):132–7.

    Article  CAS  PubMed  Google Scholar 

  8. Le Corre D, Bras J, Dufresne A. Starch nanoparticles: a review. Biomacromolecules. 2010;11(5):1139–53.

    Article  PubMed  CAS  Google Scholar 

  9. Lecorre D, Bras J, Dufresne A. Influence of botanic origin and amylose content on the morphology of starch nanocrystals. J Nanopart Res. 2011;13(12):7193–208.

    Article  CAS  Google Scholar 

  10. Sun Q, Li G, Dai L, et al. Green preparation and characterisation of waxy maize starch nanoparticles through enzymolysis and recrystallisation. Food Chem. 2014;162:223–8.

    Article  CAS  PubMed  Google Scholar 

  11. Nägeli W. Beiträge zur näheren Kenntniss der Stärkegruppe. Justus Liebigs Ann Chem. 1874;173(2):218–27.

    Article  Google Scholar 

  12. Lintner CJ. Studien über Diastase. J Prakt Chem. 1886;34:378–94.

    Article  Google Scholar 

  13. Angellier H, Choisnard L, Molina-Boisseau S, et al. Optimization of the preparation of aqueous suspensions of waxy maize starch nanocrystals using a response surface methodology. Biomacromolecules. 2004;5(4):1545–51.

    Article  CAS  PubMed  Google Scholar 

  14. Kim JY, Park DJ, Lim ST. Fragmentation of waxy rice starch granules by enzymatic hydrolysis. Cereal Chem. 2008;85(2):182–7.

    Article  CAS  Google Scholar 

  15. Belhaaj S, Magnin A, Pétrier C, et al. Starch nanoparticles formation via high power ultrasonication. Carbohydr Polym. 2012;92(2):1625–32.

    Article  CAS  Google Scholar 

  16. Sun Q, Fan H, Xiong L. Preparation and characterization of starch nanoparticles through ultrasonic-assisted oxidation methods. Carbohydr Polym. 2014;106:359–64.

    Article  CAS  PubMed  Google Scholar 

  17. Song D, Thio YS, Deng Y. Starch nanoparticle formation via reactive extrusion and related mechanism study. Carbohydr Polym. 2011;85(1):208–14.

    Article  CAS  Google Scholar 

  18. Wei B, Cai C, Jin Z, et al. High pressure homogenization induced degradation of amylopectin in a gelatinized state. Starch-Stärke. 2016;68:734–41.

    Article  CAS  Google Scholar 

  19. Liu D, Wu Q, Chen H, et al. Transitional properties of starch colloid with particle size reduction from micro-to nanometer. J Colloid Interf Sci. 2009;339(1):117–24.

    Article  CAS  Google Scholar 

  20. Che L, Wang L-J, Li D, et al. Starch pastes thinning during high-pressure homogenization. Carbohydr Polym. 2009;75(1):32–8.

    Article  CAS  Google Scholar 

  21. Toraman OY, Katircioglu D. A study on the effect of process parameters in stirred ball mill. Adv Powder Technol. 2011;22(1):26–30.

    Article  CAS  Google Scholar 

  22. Patel CM, Chakraborty M, Murthy Z. Fast and scalable preparation of starch nanoparticles by stirred media milling. Adv Powder Technol. 2016;27(4):1287–94.

    Article  CAS  Google Scholar 

  23. Lamanna M, Morales NJ, García NL, et al. Development and characterization of starch nanoparticles by gamma radiation: potential application as starch matrix filler. Carbohydr Polym. 2013;97(1):90–7.

    Article  CAS  PubMed  Google Scholar 

  24. Sun Q, Gong M, Li Y, et al. Effect of retrogradation time on preparation and characterization of proso millet starch nanoparticles. Carbohydr Polym. 2014;111:133–8.

    Article  CAS  PubMed  Google Scholar 

  25. Li X, Qin Y, Liu C, et al. Size-controlled starch nanoparticles prepared by self-assembly with different green surfactant: the effect of electrostatic repulsion or steric hindrance. Food Chem. 2016;199:356–63.

    Article  CAS  PubMed  Google Scholar 

  26. Bail PYL, Rondeau C, Buleon A. Structural investigation of amylose complexes with small ligands: helical conformation, crystalline structure and thermostability. Int J Biol Macromol. 2005;35(1):1–7.

    Article  CAS  Google Scholar 

  27. Kim J-Y, Lim S-T. Preparation of nano-sized starch particles by complex formation with n-butanol. Carbohydr Polym. 2009;76(1):110–6.

    Article  CAS  Google Scholar 

  28. Kim JY, Yoon JW, Lim ST. Formation and isolation of nanocrystal complexes between dextrins and n-butanol. Carbohydr Polym. 2009;78(3):626–32.

    Article  CAS  Google Scholar 

  29. Fessi H, Puisieux F, Devissaguet JP, et al. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm. 1989;55(1):R1–R4.

    Article  CAS  Google Scholar 

  30. Tan Y, Xu K, Li L, et al. Fabrication of size-controlled starch-based nanospheres by nanoprecipitation. ACS Appl Mater Interfaces. 2009;1(4):956–9.

    Article  CAS  PubMed  Google Scholar 

  31. Qin Y, Liu C, Jiang S, et al. Characterization of starch nanoparticles prepared by nanoprecipitation: influence of amylose content and starch type. Ind Crop Prod. 2016;87:182–90.

    Article  CAS  Google Scholar 

  32. Qiu C, Yang J, Ge S, et al. Preparation and characterization of size-controlled starch nanoparticles based on short linear chains from debranched waxy corn starch. LWT Food Sci Technol. 2016;74:303–10.

    Article  CAS  Google Scholar 

  33. Shi A, Li D, Wang L, et al. Preparation of starch-based nanoparticles through high-pressure homogenization and miniemulsion cross-linking: influence of various process parameters on particle size and stability. Carbohydr Polym. 2011;83(4):1604–10.

    Article  CAS  Google Scholar 

  34. Zhou G, Luo Z, Fu X. Preparation and characterization of starch nanoparticles in ionic liquid-in-oil microemulsions system. Ind Crop Prod. 2014;52:105–10.

    Article  CAS  Google Scholar 

  35. Zhou G, Luo Z, Fu X. Preparation of starch nanoparticles in a water-in-ionic liquid microemulsion system and their drug loading and releasing properties. J Agric Food Chem. 2014;62(32):8214–20.

    Article  CAS  PubMed  Google Scholar 

  36. Jane JL, Robyt JF. Structure studies of amylose-V complexes and retrograded amylose by action of alpha amylases, and a new method for preparing amylodextrins. Carbohydr Res. 1984;132(1):105–18.

    Article  CAS  PubMed  Google Scholar 

  37. Leloup V, Colonna P, Ring S, et al. Microstructure of amylose gels. Carbohydr Polym. 1992;18(3):189–97.

    Article  CAS  Google Scholar 

  38. Mcdonald TO, Tatham LM, Southworth FY, et al. High-throughput nanoprecipitation of the organic antimicrobial triclosan and enhancement of activity against Escherichia coli. J Mater Chem B. 2013;1(35):4455–65.

    Article  CAS  Google Scholar 

  39. Kim H, Han J, Kweon D, et al. Effect of ultrasonic treatments on nanoparticle preparation of acid-hydrolyzed waxy maize starch. Carbohydr Polym. 2013;93(2):582–8.

    Article  CAS  PubMed  Google Scholar 

  40. Kim H-Y, Park DJ, Kim J-Y, et al. Preparation of crystalline starch nanoparticles using cold acid hydrolysis and ultrasonication. Carbohydr Polym. 2013;98(1):295–301.

    Article  CAS  PubMed  Google Scholar 

  41. Siqueira G, Bras J, Dufresne A. Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules. 2009;10(2):425–32.

    Article  CAS  Google Scholar 

  42. Lin N, Huang J, Dufresne A. Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale. 2012;4(11):3274–94.

    Article  CAS  PubMed  Google Scholar 

  43. Huang J, Chang PR, Lin N, et al. Polysaccharide-based nanocrystals: chemistry and applications. Wiley: Weinheim; 2015.

    Google Scholar 

  44. Wei B, Hu X, Li H, et al. Effect of pHs on dispersity of maize starch nanocrystals in aqueous medium. Food Hydrocoll. 2014;36:369–73.

    Article  CAS  Google Scholar 

  45. Ren L, Jiang M, Zhou J, et al. A method for improving dispersion of starch nanocrystals in water through crosslinking modification with sodium hexametaphosphate. Carbohydr Polym. 2012;87(2):1874–6.

    Article  CAS  Google Scholar 

  46. Wei B, Sun B, Zhang B, et al. Synthesis, characterization and hydrophobicity of silylated starch nanocrystal. Carbohydr Polym. 2016;136:1203–8.

    Article  CAS  PubMed  Google Scholar 

  47. Xu Y, Ding W, Liu J, et al. Preparation and characterization of organic-soluble acetylated starch nanocrystals. Carbohydr Polym. 2010;80(4):1078–84.

    Article  CAS  Google Scholar 

  48. Thielemans W, Belgacem MN, Dufresne A. Starch nanocrystals with large chain surface modifications. Langmuir. 2006;22(10):4804–10.

    Article  CAS  PubMed  Google Scholar 

  49. Namazi H, Dadkhah A. Convenient method for preparation of hydrophobically modified starch nanocrystals with using fatty acids. Carbohydr Polym. 2010;79(3):731–7.

    Article  CAS  Google Scholar 

  50. Ren L, Dong Z, Jiang M, et al. Hydrophobization of starch nanocrystals through esterification in green media. Ind Crop Prod. 2014;59(0):115–8.

    Article  CAS  Google Scholar 

  51. Labet M, Thielemans W, Dufresne A. Polymer grafting onto starch nanocrystals. Biomacromolecules. 2007;8(9):2916–27.

    Article  CAS  PubMed  Google Scholar 

  52. Habibi Y, Dufresne A. Highly filled bionanocomposites from functionalized polysaccharide nanocrystals. Biomacromolecules. 2008;9(7):1974–80.

    Article  CAS  PubMed  Google Scholar 

  53. Chang PR, Ai F, Chen Y, et al. Effects of starch nanocrystal-graft-polycaprolactone on mechanical properties of waterborne polyurethane-based nanocomposites. J Appl Polym Sci. 2009;111(2):619–27.

    CAS  Google Scholar 

  54. Song S, Wang C, Pan Z, et al. Preparation and characterization of amphiphilic starch nanocrystals. J Appl Polym Sci. 2008;107(1):418–22.

    Article  CAS  Google Scholar 

  55. Valodkar M, Thakore S. Organically modified nanosized starch derivatives as excellent reinforcing agents for bionanocomposites. Carbohydr Polym. 2011;86(3):1244–51.

    Article  CAS  Google Scholar 

  56. Namazi H, Dadkhah A. Surface modification of starch nanocrystals through ring-opening polymerization of ε-caprolactone and investigation of their microstructures. J Appl Polym Sci. 2008;110(4):2405–12.

    Article  CAS  Google Scholar 

  57. Yu J, Ai F, Dufresne A, et al. Structure and mechanical properties of poly(lactic acid) filled with (starch nanocrystal)-graft-poly(ε-caprolactone). Macromol Mater Eng. 2008;293(9):763–70.

    Article  CAS  Google Scholar 

  58. Chakraborty S, Sahoo B, Teraoka I, et al. Enzyme-catalyzed regioselective modification of starch nanoparticles. Macromolecules. 2005;38(1):61–8.

    Article  CAS  Google Scholar 

  59. Ji N, Li X, Qiu C, et al. Effects of heat moisture treatment on the physicochemical properties of starch nanoparticles. Carbohydr Polym. 2015;117:605–9.

    Article  CAS  PubMed  Google Scholar 

  60. Dufresne A. Polysaccharide nano crystal reinforced nanocomposites. Can J Chem. 2008;86(6):484–94.

    Article  CAS  Google Scholar 

  61. Angellier H, Putaux JL, Molina-Boisseau S, et al. Starch nanocrystal fillers in an acrylic polymer matrix. Macromol Symp. 2005;221:95–104.

    Article  CAS  Google Scholar 

  62. Wei B, Xu X, Jin Z, et al. Surface chemical compositions and dispersity of starch nanocrystals formed by sulfuric and hydrochloric acid hydrolysis. PLoS One. 2014;9(2):e86024. https://doi.org/10.1371/journal.pone.0086024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Araki J, Wada M, Kuga S, et al. Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf A Physicochem Eng Asp. 1998;142(1):75–82.

    Article  CAS  Google Scholar 

  64. Grahame DC. The electrical double layer and the theory of electrocapillarity. Chem Rev. 1947;41(3):441.

    Article  CAS  PubMed  Google Scholar 

  65. Adamczyk Z, Weroński P. Application of the DLVO theory for particle deposition problems. Adv Colloid Interf Sci. 1999;83(1):137–226.

    Article  CAS  Google Scholar 

  66. Ranjan R, Brittain WJ. Synthesis of high density polymer brushes on nanoparticles by combined RAFT polymerization and click chemistry. Macromol Rapid Commun. 2008;29(12–13):1104–10.

    Article  CAS  Google Scholar 

  67. Dufresne A. Interfacial phenomena in nanocomposites based on polysaccharide nanocrystals. Compos Interfaces. 2003;10(4–5):369–87.

    Article  CAS  Google Scholar 

  68. Dufresne A. Crystalline starch based nanoparticles. Curr Opin Colloid Interf Sci. 2014;19(5):397–408.

    Article  CAS  Google Scholar 

  69. Dufresne A. Starch and nanoparticle. Polysaccharides: Bioactivity Biotechnol. 2015; 417–49.

    Google Scholar 

  70. Dufresne A, Castaño J. Polysaccharide nanomaterial reinforced starch nanocomposites: a review. Starch-Stärke. 2016;1500307:1–19.

    Google Scholar 

  71. Dufresne A, Cavaillé J-Y, Helbert W. New nanocomposite materials: microcrystalline starch reinforced thermoplastic. Macromolecules. 1996;29(23):7624–6.

    Article  CAS  Google Scholar 

  72. Kristo E, Biliaderis CG. Physical properties of starch nanocrystal-reinforced pullulan films. Carbohydr Polym. 2007;68(1):146–58.

    Article  CAS  Google Scholar 

  73. García NL, Ribba L, Dufresne A, et al. Physico-mechanical properties of biodegradable starch nanocomposites. Macromol Mater Eng. 2009;294(3):169–77.

    Article  CAS  Google Scholar 

  74. Angellier H, Molina-Boisseau S, Dole P, et al. Thermoplastic starch-waxy maize starch nanocrystals nanocomposites. Biomacromolecules. 2006;7(2):531–9.

    Article  CAS  PubMed  Google Scholar 

  75. García NL, Ribba L, Dufresne A, et al. Effect of glycerol on the morphology of nanocomposites made from thermoplastic starch and starch nanocrystals. Carbohydr Polym. 2011;84(1):203–10.

    Article  CAS  Google Scholar 

  76. Viguié J, Molina-Boisseau S, Dufresne A. Processing and characterization of waxy maize starch films plasticized by sorbitol and reinforced with starch nanocrystals. Macromol Biosci. 2007;7(11):1206–16.

    Article  PubMed  CAS  Google Scholar 

  77. Fan H, Ji N, Zhao M, et al. Characterization of starch films impregnated with starch nanoparticles prepared by 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation. Food Chem. 2016;192:865–72.

    Article  CAS  PubMed  Google Scholar 

  78. Jiang S, Liu C, Wang X, et al. Physicochemical properties of starch nanocomposite films enhanced by self-assembled potato starch nanoparticles. LWT Food Sci Technol. 2016;69:251–7.

    Article  CAS  Google Scholar 

  79. Liu C, Jiang S, Zhang S, et al. Characterization of edible corn starch nanocomposite films: the effect of self-assembled starch nanoparticles. Starch-Starke. 2015;68:239–48.

    Article  CAS  Google Scholar 

  80. Li X, Qiu C, Ji N, et al. Mechanical, barrier and morphological properties of starch nanocrystals-reinforced pea starch films. Carbohydr Polym. 2015;121:155–62.

    Article  CAS  PubMed  Google Scholar 

  81. Dai L, Qiu C, Xiong L, et al. Characterisation of corn starch-based films reinforced with taro starch nanoparticles. Food Chem. 2015;174:82–8.

    Article  CAS  PubMed  Google Scholar 

  82. Duan B, Sun P, Wang X, et al. Preparation and properties of starch nanocrystals/carboxymethyl chitosan nanocomposite films. Starch-Stärke. 2011;63(9):528–35.

    Article  CAS  Google Scholar 

  83. Chen Y, Cao X, Chang PR, et al. Comparative study on the films of poly (vinyl alcohol)/pea starch nanocrystals and poly (vinyl alcohol)/native pea starch. Carbohydr Polym. 2008;73(1):8–17.

    Article  CAS  Google Scholar 

  84. Zheng H, Ai F, Chang PR, et al. Structure and properties of starch nanocrystal-reinforced soy protein plastics. Polym Compos. 2009;30(4):474–80.

    Article  CAS  Google Scholar 

  85. Angellier H, Molina-Boisseau S, Lebrun L, et al. Processing and structural properties of waxy maize starch nanocrystals reinforced natural rubber. Macromolecules. 2005;38(9):3783–92.

    Article  CAS  Google Scholar 

  86. Angellier H, Molina-Boisseau S, Dufresne A. Mechanical properties of waxy maize starch nanocrystal reinforced natural rubber. Macromolecules. 2005;38(22):9161–70.

    Article  CAS  Google Scholar 

  87. Angellier H, Molina-Boisseau S, Dufresne A. Waxy maize starch nanocrystals as filler in natural rubber. Macromol Symp. 2006;233:132–6.

    Article  CAS  Google Scholar 

  88. Mele P, Angellier-Coussy H, Molina-Boisseau S, et al. Reinforcing mechanisms of starch nanocrystals in a nonvulcanized natural rubber matrix. Biomacromolecules. 2011;12(5):1487–93.

    Article  CAS  PubMed  Google Scholar 

  89. Bouthegourd E, Rajisha KR, Kalarical N, et al. Natural rubber latex/potato starch nanocrystal nanocomposites: correlation morphology/electrical properties. Mater Lett. 2011;65(23–24):3615–7.

    Article  CAS  Google Scholar 

  90. Lecorre DS, Bras J, Dufresne A. Influence of the botanic origin of starch nanocrystals on the morphological and mechanical properties of natural rubber nanocomposites. Macromol Mater Eng. 2012;297(10):969–78.

    Article  CAS  Google Scholar 

  91. Dubief D, Samain E, Dufresne A. Polysaccharide microcrystals reinforced amorphous poly(β-hydroxyoctanoate) nanocomposite materials. Macromolecules. 1999;32(18):5765–71.

    Article  CAS  Google Scholar 

  92. Dufresne A, Cavaille J. Clustering and percolation effects in microcrystalline starch-reinforced thermoplastic. J Polym Sci B Polym Phys. 1998;36(12):2211–24.

    Article  CAS  Google Scholar 

  93. Chen G, Wei M, Chen J, et al. Simultaneous reinforcing and toughening: new nanocomposites of waterborne polyurethane filled with low loading level of starch nanocrystals. Polymer (Guildf). 2008;49(7):1860–70.

    Article  CAS  Google Scholar 

  94. Wang Y, Tian H, Zhang L. Role of starch nanocrystals and cellulose whiskers in synergistic reinforcement of waterborne polyurethane. Carbohydr Polym. 2010;80(3):665–71.

    Article  CAS  Google Scholar 

  95. Ma X, Jian R, Chang PR, et al. Fabrication and characterization of citric acid-modified starch nanoparticles/plasticized-starch composites. Biomacromolecules. 2008;9(11):3314–20.

    Article  CAS  PubMed  Google Scholar 

  96. Haaj SB, Thielemans W, Magnin A, et al. Starch nanocrystals and starch nanoparticles from waxy maize as nanoreinforcement: a comparative study. Carbohydr Polym. 2016;143:310–7.

    Article  CAS  Google Scholar 

  97. Ramsden W. Separation of solids in the surface-layers of solutions and ‘Suspensions’(observations on surface-membranes, bubbles, emulsions, and mechanical coagulation) – preliminary account. Proc R Soc Lond. 1903;72:156–64.

    Article  CAS  Google Scholar 

  98. Pickering SU. Emulsions. J Chem Soc Lond. 1907;91:2001–21.

    Article  Google Scholar 

  99. Dickinson E. Use of nanoparticles and microparticles in the formation and stabilization of food emulsions. Trends Food Sci Technol. 2012;24(1):4–12.

    Article  CAS  Google Scholar 

  100. Xiao J, Li Y, Huang Q. Recent advances on food-grade particles stabilized Pickering emulsions: fabrication, characterization and research trends. Trends Food Sci Technol. 2016;55:48–60.

    Article  CAS  Google Scholar 

  101. Dickinson E. Food emulsions and foams: stabilization by particles. Curr Opin Colloid Interf Sci. 2010;15(1–2):40–9.

    Article  CAS  Google Scholar 

  102. Berton-Carabin CC, Schroën K. Pickering emulsions for food applications: background, trends, and challenges. Annu Rev Food Sci Technol. 2015;6:263–97.

    Article  CAS  PubMed  Google Scholar 

  103. Li C, Sun P, Yang C. Emulsion stabilized by starch nanocrystals. Starch-Stärke. 2012;64:497–502.

    Article  CAS  Google Scholar 

  104. Tan Y, Xu K, Liu C, et al. Fabrication of starch-based nanospheres to stabilize pickering emulsion. Carbohydr Polym. 2012;88(4):1358–63.

    Article  CAS  Google Scholar 

  105. Tan Y, Xu K, Niu C, et al. Triglyceride–water emulsions stabilised by starch-based nanoparticles. Food Hydrocoll. 2014;36:70–5.

    Article  CAS  Google Scholar 

  106. Ge S, Xiong L, Li M, et al. Characterizations of Pickering emulsions stabilized by starch nanoparticles: influence of starch variety and particle size. Food Chem. 2017;234:339–47.

    Article  CAS  PubMed  Google Scholar 

  107. Ye F, Miao M, Jiang B, et al. Elucidation of stabilizing oil-in-water Pickering emulsion with different modified maize starch-based nanoparticles. Food Chem. 2017;229:152–8.

    Article  CAS  PubMed  Google Scholar 

  108. Haaj SB, Thielemans W, Magnin A, et al. Starch nanocrystal stabilized Pickering emulsion polymerization for nanocomposites with improved performance. ACS Appl Mater Interfaces. 2014;6(11):8263–73.

    Article  CAS  PubMed  Google Scholar 

  109. Nikfarjam N, Qazvini NT, Deng Y. Cross-linked starch nanoparticles stabilized Pickering emulsion polymerization of styrene in w/o/w system. Colloid Polym Sci. 2014;292(3):599–612.

    Article  CAS  Google Scholar 

  110. Marku D, Wahlgren M, Rayner M, et al. Characterization of starch Pickering emulsions for potential applications in topical formulations. Int J Pharm. 2012;428(1–2):1–7.

    Article  CAS  PubMed  Google Scholar 

  111. Kreuter J. Nanoparticle-based dmg delivery systems. J Control Release. 1991;16(1–2):169–76.

    Article  CAS  Google Scholar 

  112. Weiner B-Z, Tahan M, Zilkha A. Polymers containing phenethylamines. J Med Chem. 1972;15(4):410–3.

    Article  CAS  PubMed  Google Scholar 

  113. Stjärnkvist P, Laakso T, Sjöholm I. Biodegradable microspheres XII: properties of the crosslinking chains in polyacryl starch microparticles. J Pharm Sci. 1989;78(1):52–6.

    Article  PubMed  Google Scholar 

  114. Won C-Y, Chu C-C, Yu T-J. Synthesis of starch-based drug carrier for the control/release of estrone hormone. Carbohydr Polym. 1997;32(3–4):239–44.

    Article  CAS  Google Scholar 

  115. Lenaerts V, Moussa I, Dumoulin Y, et al. Cross-linked high amylose starch for controlled release of drugs: recent advances. J Control Release. 1998;53(1):225–34.

    Article  CAS  PubMed  Google Scholar 

  116. Xiao S, Tong C, Liu X, et al. Preparation of folate-conjugated starch nanoparticles and its application to tumor-targeted drug delivery vector. Chin Sci Bull. 2006;51(14):1693–7.

    Article  CAS  Google Scholar 

  117. Santander-Ortega M, Stauner T, Loretz B, et al. Nanoparticles made from novel starch derivatives for transdermal drug delivery. J Control Release. 2010;141(1):85–92.

    Article  CAS  PubMed  Google Scholar 

  118. Xiao S, Liu X, Tong C, et al. Dialdehyde starch nanoparticles as antitumor drug delivery system: an in vitro, in vivo, and immunohistological evaluation. Chin Sci Bull. 2012;57:1–7.

    Article  Google Scholar 

  119. Lin N, Huang J, Chang PR, et al. Effect of polysaccharide nanocrystals on structure, properties, and drug release kinetics of alginate-based microspheres. Colloids Surf B: Biointerfaces. 2011;85(2):270–9.

    Article  CAS  PubMed  Google Scholar 

  120. Li X, Ge S, Yang J, et al. Synthesis and study the properties of StNPs/gum nanoparticles for salvianolic acid B-oral delivery system. Food Chem. 2017;229:111–9.

    Article  CAS  PubMed  Google Scholar 

  121. Qiu C, Chang R, Yang J, et al. Preparation and characterization of essential oil-loaded starch nanoparticles formed by short glucan chains. Food Chem. 2017;221:1426–33.

    Article  CAS  PubMed  Google Scholar 

  122. Liu C, Ge S, Yang J, et al. Adsorption mechanism of polyphenols onto starch nanoparticles and enhanced antioxidant activity under adverse conditions. J Funct Foods. 2016;26:632–44.

    Article  CAS  Google Scholar 

  123. Hoet PH, Brüske-Hohlfeld I, Salata OV. Nanoparticles–known and unknown health risks. J Nanobiotechnol. 2004;2(1):12.

    Article  CAS  Google Scholar 

  124. Nel A, Xia T, Mädler L, et al. Toxic potential of materials at the nanolevel. Science. 2006;311(5761):622–7.

    Article  CAS  Google Scholar 

  125. Kim H-Y, Park SS, Lim S-T. Preparation, characterization and utilization of starch nanoparticles. Colloids Surf B: Biointerfaces. 2015;126:607–20.

    Article  CAS  PubMed  Google Scholar 

  126. Alila S, Aloulou F, Thielemans W, et al. Sorption potential of modified nanocrystals for the removal of aromatic organic pollutant from aqueous solution. Ind Crop Prod. 2011;33(2):350–7.

    Article  CAS  Google Scholar 

  127. Bloembergen S, Mclennan I, Lee DI, et al. Paper binder performance with biobased nanoparticles. A starch-based biolatex can replace petroleum-based latex binders in papermaking. In: Paper 360 deg of angle Around the Industry, around the World, vol 3(8). 2008. p. 46–8.

    Google Scholar 

  128. Valodkar M, Thakore S. Isocyanate crosslinked reactive starch nanoparticles for thermo-responsive conducting applications. Carbohydr Res. 2010;345(16):2354–60.

    Article  CAS  PubMed  Google Scholar 

  129. Li X, Li M, Liu J, et al. Preparation of hollow biopolymer nanospheres employing starch nanoparticle templates for enhancement of phenolic acid antioxidant activities. J Agric Food Chem. 2017;65:3868–82.

    Article  CAS  PubMed  Google Scholar 

  130. Chin SF, Yazid SNAM, Pang SC, et al. Facile synthesis of fluorescent carbon nanodots from starch nanoparticles. Mater Lett. 2012;85:50–2.

    Article  CAS  Google Scholar 

  131. Zhang X, Huang J, Chang PR, et al. Structure and properties of polysaccharide nanocrystal-doped supramolecular hydrogels based on cyclodextrin inclusion. Polymer (Guildf). 2010;51(19):4398–407.

    Article  CAS  Google Scholar 

  132. Cai C, Wei B, Jin Z, et al. Facile method for fluorescent labeling of starch nanocrystal. ACS Sustain Chem Eng. 2017;5(5):3751–61.

    Article  CAS  Google Scholar 

  133. Yang J, Chang R, Ge S, et al. The inhibition effect of starch nanoparticles on tyrosinase activity and its mechanism. Food Funct. 2016;7(12):4804–15.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaoqi Tian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wei, B., Cai, C., Tian, Y. (2018). Nano-sized Starch: Preparations and Applications. In: Jin, Z. (eds) Functional Starch and Applications in Food. Springer, Singapore. https://doi.org/10.1007/978-981-13-1077-5_6

Download citation

Publish with us

Policies and ethics