Skip to main content

Starch Microemulsions and Its Applications

  • Chapter
  • First Online:
  • 1417 Accesses

Abstract

This chapter intends to provide a comprehensive overview of the preparation, characterization, properties, and applications of the starch microemulsion. In the first section, starch microemulsion systems are briefly described, and the mechanism used in microemulsion preparation is discussed. Meanwhile, various conventional starch microemulsion fabrication methods and factors that influence starch microemulsions are reviewed. In the second section, several experimental methods which are used for the characterization of microemulsions and the properties of starch microemulsion are reported. In the final section, the applications of starch microemulsions especially the application of starch microemulsions to foods are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Acosta E, Szekeres E, Sabatini DA, Harwell JH. Net-average curvature model for solubilization and supersolubilization in surfactant microemulsions. Langmuir. 2003;19(1):186–95.

    Article  CAS  Google Scholar 

  2. Moulik SP, Digout LG, Aylward WM, Palepu R. Studies on the interfacial composition and thermodynamic properties of W/O microemulsions. Langmuir. 2000;16(7):3101–6.

    Article  CAS  Google Scholar 

  3. Firman P, Kahlweit M. Quaternary liquid mixtures separating into four liquid phases. J Phys Chem. 1996;100(4):1216–9.

    Article  CAS  Google Scholar 

  4. Acosta EJ, Nguyen T, Witthayapanyanon A, Harwell JH, Sabatini DA. Linker-based bio-compatible microemulsions. Environ Sci Technol. 2005;39(5):1275–82.

    Article  CAS  Google Scholar 

  5. Ethayaraja M, Bandyopadhyaya R. Population balance models and Monte Carlo simulation for nanoparticle formation in water-in-oil microemulsions: implications for CdS synthesis. J Am Chem Soc. 2006;128(51):17102–13.

    Article  CAS  Google Scholar 

  6. Khomane RB, Manna A, Mandale AB, Kulkarni BD. Synthesis and characterization of dodecanethiol-capped cadmium sulfide nanoparticles in a Winsor II microemulsion of diethyl ether/AOT/water. Langmuir. 2002;18(21):8237–40.

    Article  CAS  Google Scholar 

  7. Xing Y, Li M, Davis SA, Mann S. Synthesis and characterization of cerium phosphate nanowires in microemulsion reaction media. J Phys Chem B. 2006;110(3):1111–3.

    Article  CAS  Google Scholar 

  8. Candau F, Zekhnini Z, Heatley F. Carbon-13 NMR study of the sequence distribution of poly(acrylamide-co-sodium acrylates) prepared in inverse microemulsions. Macromolecules. 1986;19(7):1895–902.

    Article  CAS  Google Scholar 

  9. Edser C. Microemulsions: putting theory into practice. Focus on Surfactants. 2011;2011(11):1–2.

    Article  Google Scholar 

  10. Vold RD. Microemulsions, theory and practice. J Colloid Interface Sci. 1978;65(3):595.

    Article  Google Scholar 

  11. Che L, Li D, Wang L, Necati Ö, Chen X, Mao Z. Effect of high-pressure homogenization on the structure of cassava starch. Int J Food Prop. 2007;10(4):911–22.

    Article  CAS  Google Scholar 

  12. Luo Z, Xu Z. Characteristics and application of enzyme-modified carboxymethyl starch in sausages. LWT Food Sci Technol. 2011;44(10):1993–8.

    Article  CAS  Google Scholar 

  13. Jobling S. Improving starch for food and industrial applications. Curr Opin Plant Biol. 2004;7(2):210–8.

    Article  CAS  Google Scholar 

  14. Lu X, Luo Z, Yu S, Fu X. Lipase-catalyzed synthesis of starch palmitate in mixed ionic liquids. J Agric Food Chem. 2012;60(36):9273–9.

    Article  CAS  Google Scholar 

  15. Morgan JD, Lusvardi KM, Kaler EW. Kinetics and mechanism of microemulsion polymerization of hexyl methacrylate. Macromolecules. 1997;30(7):1897–905.

    Article  CAS  Google Scholar 

  16. Messner M, Kurkov SV, Jansook P, Loftsson T. Self-assembled cyclodextrin aggregates and nanoparticles. Int J Pharm. 2010;387(1):199–208.

    Article  CAS  Google Scholar 

  17. Chin SF, Mohd Yazid SNA, Pang SC. Preparation and characterization of starch nanoparticles for controlled release of curcumin. Int J Polym Sci. 2014;2014:1–8.

    Article  Google Scholar 

  18. Xiao S, Tong C, Liu X, Yu D, Liu Q, Xue C, Tang D, Zhao L. Preparation of folate-conjugated starch nanoparticles and its application to tumor-targeted drug delivery vector. Chin Sci Bull. 2006;51(14):1693–7.

    Article  CAS  Google Scholar 

  19. Zhou G, Luo Z, Fu X. Preparation of starch nanoparticles in a water-in-ionic liquid microemulsion system and their drug loading and releasing properties. J Agric Food Chem. 2014;62(32):8214–20.

    Article  CAS  Google Scholar 

  20. Wang X, Liu J, Pope MT. New polyoxometalate/starch nanomaterial: synthesis, characterization and antitumoral activity. Dalton Trans. 2003. (5):957–60.

    Google Scholar 

  21. Wang X, Chen H, Luo Z, Fu X. Preparation of starch nanoparticles in water in oil microemulsion system and their drug delivery properties. Carbohydr Polym. 2016;138(Supplement C):192–200.

    Article  CAS  Google Scholar 

  22. Zhai F, Li D, Zhang C, Wang X, Li R. Synthesis and characterization of polyoxometalates loaded starch nanocomplex and its antitumoral activity. Eur J Med Chem. 2008;43(9):1911–7.

    Article  CAS  Google Scholar 

  23. Yu D, Xiao S, Tong C, Chen L, Liu X. Dialdehyde starch nanoparticles: preparation and application in drug carrier. Chin Sci Bull. 2007;52(21):2913–8.

    Article  CAS  Google Scholar 

  24. Bezemer JM, Radersma R, Grijpma DW, Dijkstra PJ, van Blitterswijk CA, Feijen J. Microspheres for protein delivery prepared from amphiphilic multiblock copolymers: 2. Modulation of release rate. J Control Release. 2000;67(2):249–60.

    Article  CAS  Google Scholar 

  25. Kawashita M, Tanaka M, Kokubo T, Inoue Y, Yao T, Hamada S, Shinjo T. Preparation of ferrimagnetic magnetite microspheres for in situ hyperthermic treatment of cancer. Biomaterials. 2005;26(15):2231–8.

    Article  CAS  Google Scholar 

  26. Sturesson C, Carlfors J. Incorporation of protein in PLG-microspheres with retention of bioactivity. J Control Release. 2000;67(2):171–8.

    Article  CAS  Google Scholar 

  27. Freitas S, Merkle HP, Gander B. Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology. J Control Release. 2005;102(2):313–32.

    Article  CAS  Google Scholar 

  28. Li M, Rouaud O, Poncelet D. Microencapsulation by solvent evaporation: state of the art for process engineering approaches. Int J Pharm. 2008;363(1):26–39.

    Article  CAS  Google Scholar 

  29. Li W-I, Anderson KW, Deluca PP. Kinetic and thermodynamic modeling of the formation of polymeric microspheres using solvent extraction/evaporation method. J Control Release. 1995;37(3):187–98.

    Article  CAS  Google Scholar 

  30. Rawat A, Burgess DJ. Effect of ethanol as a processing co-solvent on the PLGA microsphere characteristics. Int J Pharm. 2010;394(1):99–105.

    Article  CAS  Google Scholar 

  31. Zolnik BS, Leary PE, Burgess DJ. Elevated temperature accelerated release testing of PLGA microspheres. J Control Release. 2006;112(3):293–300.

    Article  CAS  Google Scholar 

  32. Lim LY, Wan LSC. Effect of magnesium stearate on chitosan microspheres prepared by an emulsification-coacervation technique. J Microencapsul. 1998;15(3):319–33.

    Article  CAS  Google Scholar 

  33. Lazko J, Popineau Y, Legrand J. Soy glycinin microcapsules by simple coacervation method. Colloids Surf B: Biointerfaces. 2004;37(1):1–8.

    Article  CAS  Google Scholar 

  34. Weiβ G, Knoch A, Laicher A, Stanislaus F, Daniels R. Simple coacervation of hydroxypropyl methylcellulose phthalate (HPMCP) II. Microencapsulation of ibuprofen. Int J Pharm. 1995;124(1):97–105.

    Article  Google Scholar 

  35. Bachtsi AR, Kiparissides C. Synthesis and release studies of oil-containing poly(vinyl alcohol) microcapsules prepared by coacervation. J Control Release. 1996;38(1):49–58.

    Article  CAS  Google Scholar 

  36. Nihant N, Grandfils C, Jérôme R, Teyssié P. Microencapsulation by coacervation of poly(lactide-co-glycolide) IV. Effect of the processing parameters on coacervation and encapsulation. J Control Release. 1995;35(2):117–25.

    Article  CAS  Google Scholar 

  37. Singh ON, Burgess DJ. Characterization of albumin-alginic acid complex coacervation. J Pharm Pharmacol. 1989;41(10):670–3.

    Article  CAS  Google Scholar 

  38. Franssen O, Hennink WE. A novel preparation method for polymeric microparticles without the use of organic solvents. Int J Pharm. 1998;168(1):1–7.

    Article  CAS  Google Scholar 

  39. Mao S, Chen J, Wei Z, Liu H, Bi D. Intranasal administration of melatonin starch microspheres. Int J Pharm. 2004;272(1):37–43.

    Article  CAS  Google Scholar 

  40. Lim F, Sun A. Microencapsulated islets as bioartificial endocrine pancreas. Science. 1980;210(4472):908–10.

    Article  CAS  Google Scholar 

  41. Alexandridou S, Kiparissides C, Mange F, Foissy A. Surface characterization of oil-containing polyterephthalamide microcapsules prepared by interfacial polymerization. J Microencapsul. 2001;18(6):767–81.

    Article  CAS  Google Scholar 

  42. Porta GD, Adami R, Gaudio PD, Prota L, Aquino R, Reverchon E. Albumin/gentamicin microspheres produced by supercritical assisted atomization: optimization of size, drug loading and release. J Pharm Sci. 2010;99(11):4720–9.

    Article  Google Scholar 

  43. Zhou G, Luo Z, Fu X. Preparation and characterization of starch nanoparticles in ionic liquid-in-oil microemulsions system. Ind Crop Prod. 2014;52:105–10.

    Article  CAS  Google Scholar 

  44. Wang X, Cheng J, Ji G, Peng X, Luo Z. Starch nanoparticles prepared in a two ionic liquid based microemulsion system and their drug loading and release properties. RSC Adv. 2016;6(6):4751–7.

    Article  CAS  Google Scholar 

  45. Kiskan B, Dogan F, Durmaz YY, Yagci Y. Synthesis, characterization and thermally-activated curing of azobenzene-containing benzoxazines. Designed Monomers Polym. 2008;11(5):473–82.

    Article  CAS  Google Scholar 

  46. Strey R. Microemulsion microstructure and interfacial curvature. Colloid Polym Sci. 1994;272(8):1005–19.

    Article  CAS  Google Scholar 

  47. Shelton DP. Raman overtone intensities measured for H2. J Chem Phys. 1990;93(3):1491–5.

    Article  CAS  Google Scholar 

  48. Stilbs P, Rapacki K, Lindman B. Effect of alcohol cosurfactant length on microemulsion structure. J Colloid Interface Sci. 1983;95(2):583–5.

    Article  CAS  Google Scholar 

  49. Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev. 2012;64(Supplement):175–93.

    Article  Google Scholar 

  50. McClements DJ. Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter. 2012;8(6):1719–29.

    Article  CAS  Google Scholar 

  51. Ge S, Xiong L, Li M, Liu J, Yang J, Chang R, Liang C, Sun Q. Characterizations of Pickering emulsions stabilized by starch nanoparticles: influence of starch variety and particle size. Food Chem. 2017;234:339–47.

    Article  CAS  Google Scholar 

  52. Cabaleiro-Lago C, García-Río L, Hervella P. The effect of changing the microstructure of a microemulsion on chemical reactivity. Langmuir. 2007;23(19):9586–95.

    Article  CAS  Google Scholar 

  53. Malheiro AR, Varanda LC, Perez J, Villullas HM. The aerosol OT + n-butanol + n-heptane + water system: phase behavior, structure characterization, and application to Pt70Fe30 nanoparticle synthesis. Langmuir. 2007;23(22):11015–20.

    Article  CAS  Google Scholar 

  54. Kogan A, Garti N. Microemulsions as transdermal drug delivery vehicles. Adv Colloid Interf Sci. 2006;123–126:369–85.

    Article  Google Scholar 

  55. Hathout RM, Woodman TJ, Mansour S, Mortada ND, Geneidi AS, Guy RH. Microemulsion formulations for the transdermal delivery of testosterone. Eur J Pharm Sci. 2010;40(3):188–96.

    Article  CAS  Google Scholar 

  56. Kogan A, Aserin A, Garti N. Improved solubilization of carbamazepine and structural transitions in nonionic microemulsions upon aqueous phase dilution. J Colloid Interface Sci. 2007;315(2):637–47.

    Article  CAS  Google Scholar 

  57. Walsh D. Microemulsions. Background, new concepts, applications, perspectives. Edited by Cosima Stubenrauch. Angew Chem Int Ed. 2009;48(25):4474.

    Article  CAS  Google Scholar 

  58. Zhong F, Yu M, Luo C, Shoemaker CF, Li Y, Xia S, Ma J. Formation and characterisation of mint oil/S and CS/water microemulsions. Food Chem. 2009;115(2):539–44.

    Article  CAS  Google Scholar 

  59. Jain R, Shah NH, Malick AW, Rhodes CT. Controlled drug delivery by biodegradable poly(ester) devices: different preparative approaches. Drug Dev Ind Pharm. 1998;24(8):703–27.

    Article  CAS  Google Scholar 

  60. Chen Y, Li F. Kinetic study on removal of copper(II) using goethite and hematite nano-photocatalysts. J Colloid Interface Sci. 2010;347(2):277–81.

    Article  CAS  Google Scholar 

  61. Kim BS, Lim ST. Removal of heavy metal ions from water by cross-linked carboxymethyl corn starch. Carbohydr Polym. 1999;39(3):217–23.

    Article  CAS  Google Scholar 

  62. Kweon DK, Choi JK, Kim EK, Lim ST. Adsorption of divalent metal ions by succinylated and oxidized corn starches. Carbohydr Polym. 2001;46(2):171–7.

    Article  CAS  Google Scholar 

  63. Xu S, Feng S, Yue F, Wang J. Adsorption of Cu(II) ions from an aqueous solution by crosslinked amphoteric starch. J Appl Polym Sci. 2004;92(2):728–32.

    Article  CAS  Google Scholar 

  64. Fang Y, Wang L, Li D, Li B, Bhandari B, Chen XD, Mao Z-h. Preparation of crosslinked starch microspheres and their drug loading and releasing properties. Carbohydr Polym. 2008;74(3):379–84.

    Article  CAS  Google Scholar 

  65. Samudrala S. Topical hemostatic agents in surgery: a surgeon’s perspective. AORN J. 2008;88(3):S2–S11.

    Article  Google Scholar 

  66. Tesch S, Gerhards C, Schubert H. Stabilization of emulsions by OSA starches. J Food Eng. 2002;54(2):167–74.

    Article  Google Scholar 

  67. Charoen R, Jangchud A, Jangchud K, Harnsilawat T, Naivikul O, McClements DJ. Influence of biopolymer emulsifier type on formation and stability of rice bran oil-in-water emulsions: whey protein, gum arabic, and modified starch. J Food Sci. 2011;76(1):E165–72.

    Article  CAS  Google Scholar 

  68. Dalgleish DG. Food emulsions-their structures and structure-forming properties. Food Hydrocoll. 2006;20(4):415–22.

    Article  CAS  Google Scholar 

  69. Reiner SJ, Reineccius GA, Peppard TL. A comparison of the stability of beverage cloud emulsions formulated with different gum acacia- and starch-based emulsifiers. J Food Sci. 2010;75(5):E236–46.

    CAS  PubMed  Google Scholar 

  70. Li C, Fu X, Luo F, Huang Q. Effects of maltose on stability and rheological properties of orange oil-in-water emulsion formed by OSA modified starch. Food Hydrocoll. 2013;32(1):79–86.

    Article  Google Scholar 

  71. Borrmann D, Pierucci APTR, Leite SGF, Leão MHM d R. Microencapsulation of passion fruit (Passiflora) juice with n-octenylsuccinate-derivatised starch using spray-drying. Food Bioprod Process. 2013;91(1):23–7.

    Article  CAS  Google Scholar 

  72. Lee LW, Liu X, Wong WSE, Liu SQ. Effects of sucrose monopalmitate (P90), Tween 80 and modified starch on coffee aroma retention and release in coffee oil-based emulsions. Food Hydrocoll. 2017;66:128–35.

    Article  CAS  Google Scholar 

  73. Zhu F, Yan X, Liu S. Preparation and recognition characteristics of alanine surface molecularly imprinted polymers. Anal Methods. 2015;7(20):8740–9.

    Article  CAS  Google Scholar 

  74. Drusch S, Serfert Y, Schwarz K. Microencapsulation of fish oil with n-octenylsuccinate-derivatised starch: flow properties and oxidative stability. Eur J Lipid Sci Technol. 2006;108(6):501–12.

    Article  CAS  Google Scholar 

  75. Serfert Y, Drusch S, Schmidt-Hansberg B, Kind M, Schwarz K. Process engineering parameters and type of n-octenylsuccinate-derivatised starch affect oxidative stability of microencapsulated long chain polyunsaturated fatty acids. J Food Eng. 2009;95(3):386–92.

    Article  CAS  Google Scholar 

  76. Deng H, Wei Z, Wang X. Enhanced adsorption of active brilliant red X-3B dye on chitosan molecularly imprinted polymer functionalized with Ti(IV) as Lewis acid. Carbohydr Polym. 2017;157:1190–7.

    Article  CAS  Google Scholar 

  77. Mao L, Miao S. Structuring food emulsions to improve nutrient delivery during digestion. Food Eng Rev. 2015;7(4):439–51.

    Article  CAS  Google Scholar 

  78. Liang R, Shoemaker CF, Yang X, Zhong F, Huang Q. Stability and bioaccessibility of β-carotene in nanoemulsions stabilized by modified starches. J Agric Food Chem. 2013;61(6):1249–57.

    Article  CAS  Google Scholar 

  79. Cheuk SY, Shih FF, Champagne ET, Daigle KW, Patindol JA, Mattison CP, Boue SM. Nano-encapsulation of coenzyme Q10 using octenyl succinic anhydride modified starch. Food Chem. 2015;174:585–90.

    Article  CAS  Google Scholar 

  80. Sarkar P, Bhunia AK, Yao Y. Emulsion stabilized with starch octenyl succinate prolongs nisin activity against Listeria monocytogenes in a cantaloupe juice model. J Food Sci. 2016;81(12):M2982–7.

    Article  CAS  Google Scholar 

  81. Sarkar P, Bhunia AK, Yao Y. Impact of starch-based emulsions on the antibacterial efficacies of nisin and thymol in cantaloupe juice. Food Chem. 2017;217:155–62.

    Article  CAS  Google Scholar 

  82. Bi L, Yang L, Bhunia AK, Yao Y. Emulsion stabilized with phytoglycogen octenyl succinate prolongs the antimicrobial efficacy of ε-poly-l-lysine against Escherichia coli O157:H7. LWT Food Sci Technol. 2016;70:245–51.

    Article  CAS  Google Scholar 

  83. Lucca PA, Tepper BJ. Fat replacers and the functionality of fat in foods. Trends Food Sci Technol. 1994;5(1):12–9.

    Article  CAS  Google Scholar 

  84. Thaiudom S, Khantarat K. Stability and rheological properties of fat-reduced mayonnaises by using sodium octenyl succinate starch as fat replacer. Procedia Food Sci. 2011;1:315–21.

    Article  CAS  Google Scholar 

  85. Chung H, Lee S, Han J-A, Lim S-T. Physical properties of dry-heated octenyl succinylated waxy corn starches and its application in fat-reduced muffin. J Cereal Sci. 2010;52(3):496–501.

    Article  CAS  Google Scholar 

  86. Chivero P, Gohtani S, Yoshii H, Nakamura A. Assessment of soy soluble polysaccharide, gum arabic and OSA-starch as emulsifiers for mayonnaise-like emulsions. LWT Food Sci Technol. 2016;69:59–66.

    Article  CAS  Google Scholar 

  87. Dapčević Hadnađev T, Hadnađev M, Pojić M, Rakita S, Krstonošić V. Functionality of OSA starch stabilized emulsions as fat replacers in cookies. J Food Eng. 2015;167:133–8.

    Article  Google Scholar 

  88. Klaochanpong N, Puncha-arnon S, Uttapap D, Puttanlek C, Rungsardthong V. Octenyl succinylation of granular and debranched waxy starches and their application in low-fat salad dressing. Food Hydrocoll. 2017;66:296–306.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinpeng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fan, H., Hu, X., Zhao, J., Wang, J. (2018). Starch Microemulsions and Its Applications. In: Jin, Z. (eds) Functional Starch and Applications in Food. Springer, Singapore. https://doi.org/10.1007/978-981-13-1077-5_5

Download citation

Publish with us

Policies and ethics