Skip to main content

Porous Starch and Its Applications

  • Chapter
  • First Online:

Abstract

Porous starches are important modified starches and are now attracting considerable attention due to their great adsorption ability. These starches contain abundant pores from the surface to the center of the granules, which increase the specific surface area, and are excellent natural absorbents. There is a growing interest in exploiting their properties in various food and non-food areas. In this chapter, the preparation, structure, properties, mechanism, and application of porous starches are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Qian J, Chen X, Ying X, LV B. Optimisation of porous star preparation by ultrasonic pretreatment followed by enzymatic hydrolysis. Int J Food Sci Technol. 2011b;46:179–85.

    Article  CAS  Google Scholar 

  2. Belingheri C, Giussani B, Rodriguez-Estrada MT, Ferrillo A, Vittadini E. Oxidative stability of high-oleic sunflower oil in a porous starch carrier. Food Chem. 2015;166:346–51.

    Article  CAS  Google Scholar 

  3. Luo Z, Cheng W, Chen H, Fu X, Peng X, Luo F, et al. Preparation and properties of enzyme-modified cassava starch/zinc complexes. J Agric Food Chem. 2013;61(19):4631–8.

    Article  CAS  Google Scholar 

  4. Kapelko-Żeberska M, Zieba T, Spychaj R, Gryszkin A. Acetylated adipate of retrograded starch as RS 3/4 type resistant starch. Food Chem. 2015;188:365–9.

    Article  Google Scholar 

  5. Wu C, Wang Z, Zhi Z, Jiang T, Zhang J, Wang S. Development of biodegradable porous starch foam for improving oral delivery of poorly water soluble drugs. Int J Pharm. 2011;403(1–2):162–9.

    Article  CAS  Google Scholar 

  6. Chang PR, Qian D, Aanerson DP, MA X. Preparation and properties of the succinic ester of porous starch. Carbohydr Polym. 2012;88:604–8.

    Article  CAS  Google Scholar 

  7. Uthumporn U, Zaidul IS, Karim AA. Hydrolysis of granular starch at sub-gelatinization temperature using a mixture of amylolytic enzymes. Food Bioprod Process. 2010;88(1):47–54.

    Article  CAS  Google Scholar 

  8. Chen XY, Chen C, Zhang ZJ, Xie DH. Synthesis and capacitive performance of nitrogen doped porous carbons derived from sodium carboxymethyl starch. Powder Technol. 2013;246:201–9.

    Article  CAS  Google Scholar 

  9. Yussof NS, Utra U, Alias AK. Hydrolysis of native and cross-linked corn, tapioca, and sweet potato starches at sub-gelatinization temperature using a mixture of amylolytic enzymes. Starch-Starke. 2013;65(3–4):285–95.

    Article  CAS  Google Scholar 

  10. Lecorre D, Vahanian E, Dufresne A, Bras J. Enzymatic pretreatment for preparing starch nanocrystals. Biomacromolecules. 2012;13(1):132–7.

    Article  CAS  Google Scholar 

  11. Dura A, Błaszczak W, Rosell CM. Functionality of porous starch obtained by amylase or amyloglucosidase treatments. Carbohydr Polym. 2014;101:837–45.

    Article  CAS  Google Scholar 

  12. Gao F, Li D, Bi CH, Mao ZH, Adhikari B. Preparation and characterization of starch crosslinked with sodium trimetaphosphate and hydrolyzed by enzymes. Carbohydr Polym. 2014;103:310–8.

    Article  CAS  Google Scholar 

  13. Jiao A, Wei B, Wu C, Jin Z, Tian Y, Li H, et al. Impact of α-amylase combined with hydrochloric acid hydrolysis on structure and digestion of waxy rice starch. Int J Biol Macromol. 2013;55:276–81.

    Article  Google Scholar 

  14. Shariffa YN, Karim AA, Fazilah A, Zaidul ISM. Enzymatic hydrolysis of granular native and mildly heat-treated tapioca and sweet potato starches at sub-gelatinization temperature. Food Hydrocoll. 2009;23(2):434–40.

    Article  CAS  Google Scholar 

  15. Majzoobi M, Hedayati S, Farahnaky A. Functional properties of microporous wheat starch produced by -amylase and sonication. Food Bioscience. 2015;11:79–84.

    Article  CAS  Google Scholar 

  16. Wu Y, Du X, Ge H, Lv Z. Preparation of microporous starch by glucoamylase and ultrasound. Starch-Stärke. 2011;63(4):217–25.

    Article  CAS  Google Scholar 

  17. Jayakody L, Hoover R. The effect of lintnerization on cereal starch granules. Food Res Int. 2002;35(7):665–80.

    Article  CAS  Google Scholar 

  18. Bao L, Zhu X, Dai H, Tao Y, Zhou X, Liu W, Kong Y. Synthesis of porous starch xerogels modified with mercaptosuccinic acid to remove hazardous gardenia yellow. Int J Biol Macromol. 2016;89:389–95.

    Article  CAS  Google Scholar 

  19. Mirka S, Katerina H, Zdenka M, Alexandra T, Viara IP, Ivo S. Magnetic porous corn starch for the affinity purification of cyclodextrin glucanotransferase produced by Bacillus circulans. Biocatal Biotransformation. 2012;30(1):96–101.

    Article  CAS  Google Scholar 

  20. Tuovinen L, Ruhanen E, Kinnarinen T, Rönkkö S, Pelkonen J, Urtti A, …, Järvinen K. Starch acetate microparticles for drug delivery into retinal pigment epithelium—in vitro study. J Control Release. 2004; 98(3), 407–13.

    Article  CAS  Google Scholar 

  21. Fundueanu G, Constantin M, Dalpiaz A, Bortolotti F, Cortesi R, Ascenzi P, Menegatti E. Preparation and characterization of starch/cyclodextrin bioadhesive microspheres as platform for nasal administration of Gabexate Mesylate (Foy®) in allergic rhinitis treatment. Biomaterials. 2004;25(1):159–70.

    Article  CAS  Google Scholar 

  22. Peng H, Xiong H, Wang S, Li J, Chen L, Zhao Q. Soluble starch–based biodegradable and microporous microspheres as potential adsorbent for stabilization and controlled release of coix seed oil. Eur Food Res Technol. 2011;232(4):693–702.

    Article  CAS  Google Scholar 

  23. García-González CA, Uy JJ, Alnaief M, Smirnova I. Preparation of tailor-made starch-based aerogel microspheres by the emulsion-gelation method. Carbohydr Polym. 2012;88(4):1378–86.

    Article  Google Scholar 

  24. Glenn GM, Klamczynski AP, Woods DF, Chiou B, Orts WJ, Imam SH. Encapsulation of plant oils in porous starch microspheres. J Agric Food Chem. 2010;58(7):4180–4.

    Article  CAS  Google Scholar 

  25. Qian D, Chang PR, Ma X. Preparation of controllable porous starch with different starch concentrations by the single or dual freezing process. Carbohydr Polym. 2011;86(3):1181–6.

    Article  CAS  Google Scholar 

  26. Basri SN, Zainuddin N, Hashim K, Yusof NA. Preparation and characterization of irradiated carboxymethyl sago starch-acid hydrogel and its application as metal scavenger in aqueous solution. Carbohydr Polym. 2016;138:34–40.

    Article  CAS  Google Scholar 

  27. Malafaya PB, Elvira C, Gallardo A, Román JS, Reis RL. Porous starch-based drug delivery systems processed by a microwave route. J Biomater Sci Polym Ed. 2001;12(11):1227–41.

    Article  CAS  Google Scholar 

  28. Ali MT, Fule R, Sav A, Amin P. Porous starch: a novel carrier for solubility enhancement of carbamazepine. AAPS PharmSciTech. 2013;14(3):919–26.

    Article  CAS  Google Scholar 

  29. Zhang B, Cui D, Liu M, Gong H, Huang Y, Han F. Corn porous starch: preparation, characterization and adsorption property. Int J Biol Macromol. 2012;50(1):250–6.

    Article  CAS  Google Scholar 

  30. Vasko PD, Blackwell J, KoenigInfrared JL. Raman spectroscopy of carbohydrates: part II: normal coordinate analysis of α-Dglucose. Carbohydr Res. 1972;23(3):407–16.

    Article  CAS  Google Scholar 

  31. Cael SJ, Koenig JL, Blackwell J. Infrared and Raman spectroscopy of carbohydrates: part III: Raman spectra of the polymorphic forms of amylose. Carbohydr Res. 1973;29(1):123–34.

    Article  CAS  Google Scholar 

  32. Benavent-Gil Y, Rosell CM. Comparison of porous starches obtained from different enzyme types and levels. Carbohydr Polym. 2017;157:533–40.

    Article  CAS  Google Scholar 

  33. Huber KC, BeMiller JN. Channels of maize and Sorghum starch granules. Carbohydr Polym. 2000;41:269–76.

    Article  CAS  Google Scholar 

  34. Ratnayke WS, Hoover R, Warkentin T. Pea starch: composition, structure and properties – a review. Starch. 2002;54:217–34.

    Article  Google Scholar 

  35. Zhao J, Madson MA, Whistler RL. Cavities in porous corn starch provide a large storage space. Cereal Chem. 1996;73(3):379–80.

    CAS  Google Scholar 

  36. WR Y, HY Y. Adsorbent characteristics of porous starch. Starch/Stärke. 2002;54(6):260–3.

    Article  Google Scholar 

  37. Dura A, Rosell CM. Physico-chemical properties of corn starch modified with cyclodextrin glycosyltransferase. Int J Biol Macromol. 2016;87:466–72.

    Article  CAS  Google Scholar 

  38. Singh H, Sodhi NS, Singh N. Structure and functional properties of acid thinned sorghum starch. Int J Food Prop. 2009;12:713–25.

    Article  CAS  Google Scholar 

  39. Kainuma K, French DN. Amylodextrin and its relationship to starch granule structure. I. Preparation and properties of amylodextrins from various starch types. Biopolymers. 1971;10:1673–8.

    Article  CAS  Google Scholar 

  40. Rocha TS, Felizardo SG, Jane J, Franco CML. Effect of annealing on the semicrystalline structure of normal and waxy corn starches. Food Hydrocoll. 2012;29(1):93–9.

    Article  CAS  Google Scholar 

  41. Biliaderis CG. The structure and interactions of starch with food constituents. Can J Physiol Pharmacol. 1991;69(15):60–78.

    Article  CAS  Google Scholar 

  42. Singh N, Singh J, Kaur L, Singh-Sodhi N, Singh-Gill B. Morphological, thermal and rheological properties of starches from different botanical sources. Food Chem. 2003;81:219–31.

    Article  CAS  Google Scholar 

  43. Gao F, Li D, Chong-hao B, Mao Z-h, Adhikari B. Application of various drying methods to produce enzymatically hydrolyzed porous starch granules. Dry Technol. 2013;31:1627–34.

    Article  CAS  Google Scholar 

  44. Xu Z, Miao M. Functional modified starch. Beijing: China Light Industry Press; 2010. p. 12–38. (in Chinese)

    Google Scholar 

  45. Wang X, Wang H, Dai Q, Li Q, Yang J. Preparation of novel porous carbon spheres from corn starch. Colloids Surf A Physicochem Eng Asp. 2009;346:213–5.

    Article  CAS  Google Scholar 

  46. Tester RF, Qi X, Karkalas J. Hydrolysis of native starches with amylases ☆. Anim Feed Sci Technol. 2006;130:39–54.

    Article  CAS  Google Scholar 

  47. Anetrezek J, Zoran H, Drago S, Jurislav B, Mladen B, Suzanarimac B, Tomislav B, Domagoj C, Branko T, Jurica G. Ultrasound effect on physical properties of corn starch. Carbohydr Polym. 2010;79:91–100.

    Article  Google Scholar 

  48. Topates G, Petasch U, Adler J, Kara F, Mandal H. Production and permeability of porous Si3N4 ceramics produced by starch addition. J Asian Ceramic Soc. 2013;1:257–61.

    Article  Google Scholar 

  49. Xu G, Chen Z, Zhang X, Cui H, Zhang Z, Zhan X. Preparation of porous Al2TiO5-Mullite ceramic by starch consolidation casting and its corrosion resistance characterization. Ceram Int. 2016;42:14107–12.

    Article  CAS  Google Scholar 

  50. Zhang Y, Hu L, Han J, Jiang Z, Zhou Y. Soluble starch scaffolds with uniaxial aligned channel structure for in situ synthesis of hierarchically porous silica ceramics. Microporous Mesoporous Mater. 2010;130:327–32.

    Article  CAS  Google Scholar 

  51. Li S, Wang C-A, Zhou J. Effect of starch addition on microstructure and properties of highly porous alumina ceramics. Ceram Int. 2013;39:8833–9.

    Article  CAS  Google Scholar 

  52. Guan J, Hanna MA. Extruding foams from corn starch acetate and native corn starch. Biomacromolecules. 2004;5:2329–39.

    Article  CAS  Google Scholar 

  53. El-Tahlawy K, Venditti R, Pawlak J. Effect of alkyl ketene dimer reacted starch on the properties of starch microcellular foam using a solvent exchange technique. Carbohydr Polym. 2008;73:133–42.

    Article  CAS  Google Scholar 

  54. Chang PR, Yu JG, Ma XF. Preparation of porous starch and its use as a structure-directing agent for production of porous zinc oxide. 2011. Chen G, Zhang B. Hydrolysis of granular corn starch with controlled pore size. J Cereal Sci. 2012;56(2), 316–320.

    Article  CAS  Google Scholar 

  55. Patel VR, Amiji MM. Preparation and characterization of freeze-dried chitosan-poly(ethylene oxide) hydrogels for site-specific antibiotic delivery in the stomach. Pharm Res. 1996;13:588–93.

    Article  CAS  Google Scholar 

  56. Scaman CH, Durance TD, Drummond L, Sun DW. Combined Microwave Vacuum Drying[M]. Emerg Technol Food Process. 2005:427–45.

    Google Scholar 

  57. Cui ZW, Xu SY, Sun DW. Microwave-vacuum drying kinetics of carrot slices. J Food Eng. 2004;65:157–64.

    Article  Google Scholar 

  58. Qiao X, Tang Z, Sun K. Plasticization of corn starch by polyol mixtures. Carbohydr Polym. 2011;83:659–64.

    Article  CAS  Google Scholar 

  59. Miao Z, Ding K, Wu T, Liu Z, Han B, An G, Miao S, Yang G. Fabrication of 3D-networks of native starch and their application to produce porous inorganic oxide networks through a supercritical route. Microporous Mesoporous Mater. 2008;111:104–9.

    Article  CAS  Google Scholar 

  60. Manoi K, Rizvi SSH. Physicochemical characteristics of phosphorylated cross-linked starch produced by reactive supercritical fluid extrusion. Carbohydr Polym. 2010;81:687–94.

    Article  CAS  Google Scholar 

  61. Guo Y, Rochstraw DA. Activated carbons prepared from rice hull by one-step phosphoric acid activation. Microporous Mesoporous Mater. 2007;100:12–9.

    Article  CAS  Google Scholar 

  62. Jiang J, Bao L, Qiang Y, Xiong Y, Chen J, Guan S, Chen J. Sol-gel process-derived rich nitrogen-doped porous carbon through KOH activation for supercapacitors. Electrochim Acta. 2015;158:229–36.

    Article  CAS  Google Scholar 

  63. He X, Ling P, Yu M, Wang X, Zhang X, Zheng M, He X, Ling P, Yu M, Wang X. Rice husk-derived porous carbons with high capacitance by ZnCl2 activation for supercapacitors. Electrochim Acta. 2013;105:635–41.

    Article  CAS  Google Scholar 

  64. Ilnicha A, Lukaszewicz JP. Synthesis of N-rich microporous carbon materials from chitosan by alkali activation using Na 2 CO 3. Mater Sci Eng B. 2015;201:66–71.

    Article  Google Scholar 

  65. Wang H, Zhong Y, Li Q, Yang J, Dai Q. Cationic starch as a precursor to prepare porous activated carbon for application in supercapacitor electrodes. J Phys Chem Solids. 2008;69:2420–5.

    Article  CAS  Google Scholar 

  66. Ding L, Zou B, Li Y, Liu H, Wang Z, Zhao C, Su Y, Guo Y. The production of hydrochar-based hierarchical porous carbons for use as electrochemical supercapacitor electrode materials. Colloids Surf A Physicochem Eng Asp. 2013;423:104–11.

    Article  CAS  Google Scholar 

  67. Xiaofei M, Xueyuan L, Anderson DP, Chang PR. Modification of porous starch for the adsorption of heavy metal ions from aqueous solution. Food Chem. 2015;181:133–9.

    Article  Google Scholar 

  68. Ma XF, Chang PR, Yu JG, Stumborg M. Properties of biodegradable citric acid-modified granular starch/thermoplastic pea starch composites. Carbohydr Polym. 2009;75:1–8.

    Article  CAS  Google Scholar 

  69. Xiang YC, Zhou QQ. The production of porous carbon from calcium lignosulfonate without activation process and the capacitive performance. Electrochim Acta. 2012;71:92–9.

    Article  Google Scholar 

  70. Nielsen A, Getler J. Spray drying and other methods for encapsulation of flavourings. In: Ziegler H, editor. Flavourings. Weinheim: Wiley-VCH; 2007. p. 97–108.

    Google Scholar 

  71. Niedzielin K, Kordechi H, Enabirkenfeld B. A controlled, double-blind, randomized study on the efficacy of Lactobacillus plantarum 299V in patients with irritable bowel syndrome. Eur J Gastroenterol Hepatol. 2001;13:1143–7.

    Article  CAS  Google Scholar 

  72. Malik M, Widlansky ME, Suboc T, Coulliard A, Su J, Salzman NH, Baker JE. The probiotic bacterium lactobacillus Plantarum 299v improves vascular endothelial function and decreases inflammatory biomarkers in men with established cardiovascular disease. Circulation. 2015;132:A10898.

    Article  Google Scholar 

  73. Li H, Thuyho VT, Turner MS, Dhital S. Encapsulation of Lactobacillus plantarum in porous maize starch. LWT Food Sci Technol. 2016;74:542–9.

    Article  CAS  Google Scholar 

  74. Wang Y-F, Shao J-J, Wang Z-L, Lu Z-X. Study of allicin microcapsules in β-cyclodextrin and porous starch mixture. Food Res Int. 2012;49:641–7.

    Article  CAS  Google Scholar 

  75. Porter CJ, Trevaskis NL, Charman WN. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov. 2007;6:231–48.

    Article  CAS  Google Scholar 

  76. Zhang Z, Huang J, Jiang S, Liu Z, Gu W, Yu H, Li Y. Porous starch based self-assembled nano-delivery system improves the oral absorption of lipophilic drug. Int J Pharm. 2013;444:162–8.

    Article  CAS  Google Scholar 

  77. Brewster ME, Loftsson T. Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev. 2007;59:645–66.

    Article  CAS  Google Scholar 

  78. Florence AT. Nanoparticle uptake by the oral route: fulfilling its potential? Drug Discov Today Technol. 2005;2:75–81.

    Article  CAS  Google Scholar 

  79. Balmayor ER, Tuzlakoglu K, Marques AP, Azevedo HS, Reis RL. A novel enzymatically-mediated drug delivery carrier for bone tissue engineering applications: combining biodegradable starch-based microparticles and differentiation agents. J Mater Sci Mater Med. 2008;19:1617–23.

    Article  CAS  Google Scholar 

  80. Lee SY, Eskridge KM, Koh WY, Hanna MA. Evaluation of ingredient effects on extruded starch-based foams using a supersaturated split-plot design. Ind Crop Prod. 2009;29:427–36.

    Article  CAS  Google Scholar 

  81. Liu J, Liu G, Liu W. Preparation of water-soluble β-cyclodextrin/poly(acrylic acid)/graphene oxide nanocomposites as new adsorbents to remove cationic dyes from aqueous solutions[J]. Chem Eng J. 2014;257:299–308.

    Article  CAS  Google Scholar 

  82. Galindo C, Jacques P, Kalt A. Photodegradation of the aminoazobenzene acid orange 52 by three advanced oxidation processes: UV/H 2 O 2, UV/TiO 2 and VIS/TiO 2: comparative mechanistic and kinetic investigations. J Photochem Photobiol A Chem. 2000;130:35–47.

    Article  CAS  Google Scholar 

  83. Sanghi R, Bhattacharya B. Review on decolorisation of aqueous dye solutions by low cost adsorbents. Color Technol. 2002;118:256–69.

    Article  CAS  Google Scholar 

  84. Guo L, Li G, Liu J, Meng Y, Tang Y. Adsorptive decolorization of methylene blue by crosslinked porous starch. Carbohydr Polym. 2013;93:374–9.

    Article  CAS  Google Scholar 

  85. Schneider P, Smith J. Chromatographic study of surface diffusion. AICHE J. 1968;14:886–95.

    Article  CAS  Google Scholar 

  86. Tofighy MA, Mohammadi T. Adsorption of divalent heavy metal ions from water using carbon nanotube sheets. J Hazard Mater. 2011;185:140–7.

    Article  CAS  Google Scholar 

  87. Jain M, Garg V, Kadirvelu K. Chromium (VI) removal from aqueous system using Helianthus annuus (sunflower) stem waste. J Hazard Mater. 2009;162:365–72.

    Article  CAS  Google Scholar 

  88. Ma X, Liu X, Anderson DP, Chang PR. Modification of porous starch for the adsorption of heavy metal ions from aqueous solution. Food Chem. 2015;181:133–9.

    Article  CAS  Google Scholar 

  89. Naushad M, Ahamad T, Sharma G, Ala’a H, Albadarin AB, Alam MM, Alothman ZA, Alahehri SM, Ghfar AA. Synthesis and characterization of a new starch/SnO 2 nanocomposite for efficient adsorption of toxic Hg 2+ metal ion. Chem Eng J. 2016;300:306–16.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wangyang Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, L., Shen, W., Zhang, W., Li, F., Zhu, Z. (2018). Porous Starch and Its Applications. In: Jin, Z. (eds) Functional Starch and Applications in Food. Springer, Singapore. https://doi.org/10.1007/978-981-13-1077-5_4

Download citation

Publish with us

Policies and ethics