Skip to main content

Resistant Starch and Its Applications

  • Chapter
  • First Online:
Functional Starch and Applications in Food

Abstract

Resistant starch (RS) can escape digestion in the small intestine to be fermented only in the colon, thus producing short-chain fatty acids (SCFAs). RS has beneficial effects on human metabolism and colonic health by improving glycemic and insulin responses, controlling lipid metabolism, modulating the gut microbiota similar to probiotics, and preventing colon cancer. RS possesses the desired physicochemical properties including fine particle size, a bland flavor, and a whitish color, necessary to produce high-quality foods. Because of its unique health benefits and properties as a functional fiber, RS has the potential for utilization in a variety of foods. RS can be commercially produced by different physical, enzymatic, and chemical modifications. In this chapter, an overview is provided including the classification of different types of RS, preparation approaches based on factors affecting the digestion of starch, various detection methods for RS, a detailed explanation of the biology and health benefits, and applications for RS in foods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Slavin J. Whole grains and human health. Nutr Res Rev. 2004;17:99.

    Article  Google Scholar 

  2. Tester RF, Karkalas J, Qi X. Starch-composition, fine structure and architecture. J Cereal Sci. 2004;39(2):151–65.

    Article  CAS  Google Scholar 

  3. Hizukuri, S., Takeda, J., Abe, I., et al. 1997. Starch: structure and functionality, The Royal Society of Chemistry, London,. 121–128.

    Google Scholar 

  4. Svihus B, Hervik AK. Digestion and metabolic fates of starch, and its relation to major nutrition-related health problems: a review. Starch/Stärke. 2016;68:302–13.

    Article  CAS  Google Scholar 

  5. Robyt JF. Enzymes and their action on starch. In: BeMiller J, Whistler R, editors. Starch: chemistry and technology. New York: Elsevier; 2009. p. 237–92.

    Chapter  Google Scholar 

  6. Robertson MD. Dietary-resistant starch and glucose metabolism. Curr Opin Clin Nutr Metab Care. 2012;15:362–7.

    Article  CAS  Google Scholar 

  7. Ting Wong TH, Yu Louie JC. The relationship between resistant starch and glycemic control: a review on current evidence and possible mechanisms. Starch/Stärke. 2016;68:1–9.

    Article  Google Scholar 

  8. Higgins J. Resistant starch: metabolic effects and potential health benefits. J AOAC Int. 2004;87(3):761–8.

    CAS  PubMed  Google Scholar 

  9. IDF Clinical Guidelines Task Force. Global guideline for type 2 diabetes. Brussels: International Diabetes Federation; 2012.

    Google Scholar 

  10. Sajilata MG, Singhal RS, Kulkarni PR. Resistant starch-a review. Compr Rev Food Sci Food Saf. 2006;5:1–17.

    Article  CAS  Google Scholar 

  11. Birt DF, Boylston T, Hendrich S, et al. Resistant starch: promise for improving human health. Adv Nutr. 2013;4:587–601.

    Article  CAS  Google Scholar 

  12. Lockyer S, Nugen AP. Health effects of resistant starch. Br Nutr Found Nutr Bull. 2017;42:10–41.

    Article  Google Scholar 

  13. Ratnayake WS, Hoover R, Shahidi F, et al. Composition, molecular structure, and physicochemical properties of starches from four field pea (Pisum sativum L.) cultivars. Food Chem. 2001;74(2):189–202.

    Article  CAS  Google Scholar 

  14. Perez S, Bertoft E. The molecular structures of starch components and their contribution to the architecture of starch granules: a comprehensive review. Starch/Stärke. 2010;62:389–420.

    Article  CAS  Google Scholar 

  15. Zabar S, Lesmes U, Katz I. Studying different dimensions of amylose–long chain fatty acid complexes: molecular, nano and micro level characteristics. Food Hydrocoll. 2009;23(7)

    Article  CAS  Google Scholar 

  16. Contreras-Gallegos E, Domínguez FA, Hernández-Aguilar C, et al. Study of thermal and structural properties of starch granules from different maize genotypes. Food Biophysics. 2015;10(1):19–24.

    Article  Google Scholar 

  17. Jayakody L, Lan H, Hoover R, et al. Composition, molecular structure, and physicochemical properties of starches from two grass pea (Lathyrus sativus L.) cultivars grown in Canada. Food Chem. 2007;105(1):116–25.

    Article  CAS  Google Scholar 

  18. Jane J, Chen YY, Lee LF, et al. Effects of amylopectin branch chain length and amylose content on the gelatinisation and pasting properties of starch. Cereal Chem. 1999;76:629–37.

    Article  CAS  Google Scholar 

  19. Zhou Z, Topping DL, Morell MK, et al. Changes in starch physical characteristics following digestion of foods in the human small intestine. Br J Nutr. 2010;104:573–81.

    Article  CAS  Google Scholar 

  20. Englyst HN, Kingman SM, Cummings JH. Classification and measurement of nutritionally important starch fractions. Eur J Clin Nutr. 1992;46:S33–50.

    Google Scholar 

  21. Brouns F, Arrigoni E, Langkilde AM, et al. Physiological and metabolic properties of a digestion resistant maltodextrin, classified as type 3 retrograded resistant starch. J Agric Food Chem. 2007;55:1574–81.

    Article  CAS  Google Scholar 

  22. Ashwar BA, Gani A, Shah A. Preparation, health benefits and applications of resistant starch—a review. Starch/Stärke. 2016;68:287–301.

    Article  CAS  Google Scholar 

  23. Gelencser T, Gal V, Hodsagi M. Evaluation of quality and digestibility characteristics of resistant starch-enriched pasta. Food Bioprocess Technol. 2008;1(1):171–9.

    Article  Google Scholar 

  24. Chiu YT, Stewart ML. Effect of variety and cooking method on resistant starch content of white rice and subsequent postprandial glucose response and appetite in humans. Asia Pac J Clin Nutr. 2013;22:372–9.

    PubMed  Google Scholar 

  25. Eerlingen RC, Delcour JA. Formation, analysis, structure and properties of type III enzyme resistant starch. J Cereal Sci. 1995;22:129–38.

    Article  CAS  Google Scholar 

  26. Dupuis JH, Liu Q, Yada RY. Methodologies for increasing the resistant starch content of food starches: a review. Compr Rev Food Sci Food Saf. 2014;13:1219–34.

    Article  CAS  Google Scholar 

  27. Remya R, Jyothi AN, Sreekumar J. Comparative study of RS4 type resistant starches derived from cassava and potato starches via octenyl succinylation. Starch-Stärke. 2017;69:1600264.

    Article  Google Scholar 

  28. Yousefi AR, Razavi SMA, Norouzyc A. In vitro gastrointestinal digestibility of native, hydroxypropylated and cross-linked wheat starches. Food Funct. 2015;6(9):3126–34.

    Article  CAS  Google Scholar 

  29. Godet M, Buleon A, Tran V, Colonna P. Structural features of fatty acid-amylose complexes. Carbohydr Polym. 1993;21:91–5.

    Article  CAS  Google Scholar 

  30. Ohkuma K, Wakabayashi S. Fibersol-2: a soluble, non-digestible, starch-derived dietary fibre. In: Advanced dietary fibre technology. Hoboken: Barry McCleary and Leon Prosky/Wiley-blackwell; 2008. p. 509–24

    Google Scholar 

  31. Svihus B, Uhlen AK, Harstad OM. Effect of starch granule structure, associated components and processing on nutritive value of cereal starch: a review. Anim Feed Sci Technol. 2005;122:303–20.

    Article  CAS  Google Scholar 

  32. Shi YC, Jeffcoat R. Structural features of resistant starch. In: McCleary B, Prosky L, editors. Advanced dietary fibre technology. Oxford: Wiley Blackwell; 2001. p. 430–9.

    Google Scholar 

  33. Vamadevan V, Bertoft E. Structure-function relationships of starch components. Starch-Stärke. 2015;67(1, 2):55–68.

    Article  CAS  Google Scholar 

  34. Jiang H, Campbell M, Blanco M, et al. Characterization of maize amylose-extender (ae) mutant starches. Part II: structures and properties of starch residues remaining after enzymatic hydrolysis at boiling-water temperature. Carbohydr Polym. 2010b;80(1):1–12.

    Article  CAS  Google Scholar 

  35. Li L, Jiang H, Campbell M, et al. Characterization of maize amylose-extender (ae) mutant starches. Part I: relationship between resistant starch contents and molecular structures. Carbohydr Polym. 2008;74:396–404.

    Article  CAS  Google Scholar 

  36. Haralampu SG. Resistant starch-a review of the physical properties and biological impact of RS3. Carbohydr Polym. 2000;41:285–92.

    Article  CAS  Google Scholar 

  37. Patel H, Williams G, Gaisford S. Preparation and characterisation of retrograded resistant starch. Proc Nutr Soc. 2015;74:E48.

    Article  Google Scholar 

  38. Putseys J, Lamberts L, Delcour J. Amylose-inclusion complexes: formation, identity and physicochemical properties. J Cereal Sci. 2010;51:238–47.

    Article  CAS  Google Scholar 

  39. Rappenecker G, Zugenmaier P. Detailed refinement of the crystal structure of V-amylose. Carbohydr Res. 1981;1981(89):11–9.

    Article  CAS  Google Scholar 

  40. Biliaderis CG, Galloway G. Crystallization behavior of amylose-V complexes: structure-property relationships. Carbohydr Res. 1989;189:31–48.

    Article  CAS  Google Scholar 

  41. Obiro WC, Sinha Ray S, Emmambux MN. V-amylose structural characteristics, methods of preparation, significance, and potential applications. Food Rev Int. 2012;28:412–38.

    Article  CAS  Google Scholar 

  42. Raigond P, Ezekiel R, Raigond B. Resistant starch in food: a review. J Sci Food Agric. 2015;95:1968–78.

    Article  CAS  Google Scholar 

  43. Quek R, Henry CJ. Influence of polyphenols from lingonberry, cranberry, and red grape on in vitro digestibility of rice. Int J Food Sci Nutr. 2015;66(4):378–82.

    Article  CAS  Google Scholar 

  44. Noda T, Takigawa S, Matsuura-Endo C, et al. Factors affecting the digestibility of raw and gelatinized potato starches. Food Chem. 2008;110:465–70.

    Article  CAS  Google Scholar 

  45. Leeman AM, Karlsson ME, Eliasson AC, et al. Resistant starch formation in temperature treated potato starches with varying in amylose and amylopectin ratio. Carbohydr Polym. 2006;65:306–13.

    Article  Google Scholar 

  46. Alsaffar AA. Effect of food processing on the resistant starch content of cereals and cereal products – a review. Int J Food Sci Technol. 2011;46(3):455–62.

    Article  CAS  Google Scholar 

  47. Wolf B. Polysaccharide functionality through extrusion cooking. Curr Opin Colloid Interface Sci. 2010;15:50–4.

    Article  CAS  Google Scholar 

  48. Masatcioglu TM, Sumer Z, Koksel H. An innovative approach for significantly increasing enzyme resistant starch type 3 content in high amylose starches by using extrusion cooking. J Cereal Sci. 2017;74(2017):95–102.

    Article  CAS  Google Scholar 

  49. Pratiwi M, Faridah DN, Lioe HN. Structural changes to starch after acid hydrolysis, debranching, autoclaving-cooling cycles, and heat moisture treatment (HMT): a review. Starch/Stärke. 2017;68:1700028.

    Google Scholar 

  50. Jane JL, Hasjim J, Birt D. Resistant food starches and methods related thereto. 29pp, Application: WO. Ames: Iowa State University Research Foundation; 2009.

    Google Scholar 

  51. Haralampu SG. In-vivo and in-vitro digestion of resistant starch. In: Advanced dietary fibre technology. Hoboken: Barry McCleary and Leon Prosky/Wiley-blackwell; 2008. p. 413–23.

    Google Scholar 

  52. Sang Y, Seib PA. Resistant starches from amylose mutants of corn by simultaneous heat-moisture treatment and phosphorylation. Carbohydr Polym. 2006;63:167–75.

    Article  CAS  Google Scholar 

  53. Zavareze ED, El Halal SLM, de los Santos DG. Resistant starch and thermal, morphological and textural properties of heat-moisture treated rice starches with high-, medium- and low-amylose content. Starch-Starke. 2012;64(1):45–54.

    Article  CAS  Google Scholar 

  54. Reddy CK, Pramila S, Haripriya S. Pasting, textural and thermal properties of resistant starch prepared from potato (Solanum tuberosum) starch using pullulanase enzyme. J Food Sci Technol. 2015;52:1594.

    Article  CAS  Google Scholar 

  55. Remya R, Jyothi AN, Sreekumar J. Comparative study of RS4 type resistant starches derived from cassava and potato starches via octenyl succinylation. Starch-Stärke. 2017;69(7–8):1600264.

    Article  Google Scholar 

  56. Ai Y, Nelson B, Birt DF. In vitro and in vivo digestion of octenyl succinic starch. Carbohydr Polym. 2013;98(2):1266–71.

    Article  CAS  Google Scholar 

  57. Genkina NK, Kiseleva VI, Martirosyan VV. Different types of V amylose-lipid inclusion complexes in maize extrudates revealed by DSC analysis. Starch-Stärke. 2015;67(9,10):752–5.

    Article  CAS  Google Scholar 

  58. Meng S, Ma Y, Cui J. Preparation of corn starch-fatty acid complexes by high-pressure homogenization. Starch-Stärke. 2014;66(9,10):809–17.

    Article  CAS  Google Scholar 

  59. Toraya-Avilés R, Segura-Campos M, Chel-Guerrero L, et al. Some nutritional characteristics of enzymatically resistant maltodextrin from cassava (Manihot esculenta Crantz) starch. Plant Foods Hum Nutr. 2017;72(2):149–55.

    Article  Google Scholar 

  60. Rocío TA, Maira SC, Luis CG. Effects of pyroconversion and enzymatic hydrolysis on indigestible starch content and physicochemical properties of cassava (Manihot esculenta) starch. Starch/Stärke. 2017;69:1600267.

    Article  Google Scholar 

  61. Rocío TA, Maira SC, Luis CG. Some nutritional characteristics of enzymatically resistant maltodextrin from cassava (Manihot esculenta Crantz) starch. Plant Foods Hum Nutr. 2017;72(2):149–55.

    Article  Google Scholar 

  62. Perera A, Meda V, Tyler RT. Resistant starch: a review of analytical protocols for determining resistant starch and of factors affecting the resistant starch content of foods. Food Res Int. 2010;43:1959–74.

    Article  CAS  Google Scholar 

  63. Goñi I, García-Diza L, Mańasb E, Saura-Calixto F. Analysis of resistant starch: a method for foods and food product. Food Chem. 1996;56(4):445–59.

    Article  Google Scholar 

  64. Hussain A, Claussen B, Ramachandran A, et al. Prevention of type 2 diabetes: a review. Diabetes Res Clin Pract. 2007;76:317–26.

    Article  CAS  Google Scholar 

  65. Stanner S. Cardiovascular disease: diet, nutrition and emerging risk factors (The report of the British Nutrition Foundation Task Force). Oxford: Wiley; 2005.

    Google Scholar 

  66. Zhou Z, Cao X, Zhou JYH. Effect of resistant starch structure on short-chain fatty acids production by human gut microbiota fermentation in vitro. Starc/Stärke. 2013;65:509–16.

    Article  CAS  Google Scholar 

  67. Bird AR, Vuaran MS, King RA, et al. Wholegrain foods made from a novel high-amylose barley variety (Himalaya 292) improve indices of bowel health in human subjects. Br J Nutr. 2008;99:1032–40.

    Article  CAS  Google Scholar 

  68. Arora T, Backhed F. The gut microbiota and metabolic disease: current understanding and future perspectives. J Intern Med. 2016;280:339–49.

    Article  CAS  Google Scholar 

  69. Martinez RC, Bedani R, Saad SM. Scientific evidence for health effects attributed to the consumption of probiotics and prebiotics: an update for current perspectives and future challenges. Br J Nutr. 2015;114:1993–2015.

    Article  CAS  Google Scholar 

  70. Wu GD, Compher C, Chen EZ, et al. Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. Gut. 2016;65:63.

    Article  CAS  Google Scholar 

  71. Diane FB, Gregory JP. Diet, genes, and microbes: complexities of colon cancer prevention. Toxicol Pathol. 2014;42(1):182–8.

    Article  Google Scholar 

  72. Le Leu RK, Winter JM, Christophersen CT, et al. Butyrylated starch intake can prevent red meat-induced O6-methyl-2deoxyguanosine adducts in human rectal tissue: a randomised clinical trial. Br J Nutr. 2015;114:220–30.

    Article  Google Scholar 

  73. Gabriel Arp C, Correa MJ, Zuleta Á. Techno-functional properties of wheat flour-resistant starch mixtures applied to breadmaking. Int J Food Sci Technol. 2017;52(2):550–8.

    Article  Google Scholar 

  74. Sanz-Penella JM, Wronkowska M, Soral-Smietana M, et al. Impact of the addition of resistant starch from modified pea starch on dough and bread performance. Eur Food Res Technol. 2010;231:499–508.

    Article  CAS  Google Scholar 

  75. Haynes L, Gimmler N, Locke JP, et al. Process for making enzyme-resistant starch for reduced-calorie flour replacer. U.S. patent 6,013,299. Jan 11, 2000. Wilmington: Nabisco Technology Co; 2000.

    Google Scholar 

  76. Montesinos-Herrero C, Cottell DC, Dolores O’Riordan E, et al. Partial replacement of fat by functional fibre in imitation cheese: effects on rheology and microstructure. Int Dairy J. 2006;16:910–91983.

    Article  CAS  Google Scholar 

  77. Noronha N, O’Riordan ED, O’Sullivan M. Replacement of fat with functional fibre in imitation cheese. Int Dairy J. 2007;17:1073–82.

    Article  CAS  Google Scholar 

  78. Sanz T, Salvador A, Fiszman SM. Resistant starch (RS) in battered fried products: functionality and high-fibre benefit. Food Hydrocoll. 2008;22:543–9.

    Article  CAS  Google Scholar 

  79. Homayouni A, Amini A, Keshtiban AK. Resistant starch in food industry: a changing outlook for consumer and producer. Starch/Stärke. 2014;66:102–14.

    Article  CAS  Google Scholar 

  80. Kapusniak K, Nebesny E. Enzyme-resistant dextrins from potato starch for potential application in the beverage industry. Carbohydr Polym. 2017;172:152–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuehong Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, X. (2018). Resistant Starch and Its Applications. In: Jin, Z. (eds) Functional Starch and Applications in Food. Springer, Singapore. https://doi.org/10.1007/978-981-13-1077-5_3

Download citation

Publish with us

Policies and ethics