Skip to main content

The Overview of Functional Starch

  • Chapter
  • First Online:
Functional Starch and Applications in Food

Abstract

Starch is a staple constituent of foodstuffs and energy source in the human diet. In many cases, its practical use is limited because of its lack of versatility to function adequately in the whole range of food product. Functional starch is designated as chemical, physical, or enzymatical modified starch with specific functional properties such as physiological function, healthy benefits, absorption function, sustained slow energy release, and other functions. Functional starches such as slowly digestible starch, resistant starch, porous starch, starch microemulsions, nano-sized starch, and starch copolymers are the dominating varieties that can be used in the food industry. Nowadays, the preparation of functional starch is an ongoing process as there are numerous possibilities, resulting from an evolution of new processing technologies and market trends. This chapter reviewed the current state of knowledge on functional starch. Particular emphasis was placed on the definition, classification, and characterization of functional starch in the food industry. The preparation and application of functional starches were overviewed, which gave a brief introduction for the following chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jobling S. Improving starch for food and industrial applications. Curr Opin Plant Biol. 2004;7(2):210–8.

    Article  CAS  PubMed  Google Scholar 

  2. Bertoft E. Composition of clusters and their arrangement in potato amylopectin. Carbohydr Polym. 2007;68(3):433–46.

    Article  CAS  Google Scholar 

  3. Ball SG, van de Wal MHBJ, Visser RGF. Progress in understanding the biosynthesis of amylose. Trends Plant Sci. 1998;3(12):462–7.

    Article  Google Scholar 

  4. Roger P, Colonna P. Molecular weight distribution of amylose fractions obtained by aqueous leaching of corn starch. Int J Biol Macromol. 1996;19(1):51.

    Article  CAS  Google Scholar 

  5. Buléon A, et al. Starch granules: structure and biosynthesis. Int J Biol Macromol. 1998;23(2):85–112.

    Article  PubMed  Google Scholar 

  6. Manners DJ. Recent developments in our understanding of amylopectin structure. Carbohydr Polym. 1989;11(2):87–112.

    Article  CAS  Google Scholar 

  7. Jane J, et al. Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chem. 1999;76(5):629–37.

    Article  CAS  Google Scholar 

  8. Jenkins S. Morphological, thermal and rheological properties of starches from different botanical sources. Food Chem. 2003;81(2):219–31.

    Article  CAS  Google Scholar 

  9. Miao M, et al. Slowly digestible starch: a review. Crit Rev Food Sci Nutr. 2015;55(12):1642–57.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang G, Hamaker BR. Slowly digestible starch: concept, mechanism, and proposed extended glycemic index. Crit Rev Food Sci Nutr. 2009;49(10):852.

    Article  CAS  PubMed  Google Scholar 

  11. A H, et al. Glycemic and insulinemic meal responses modulate postprandial hepatic and intestinal lipoprotein accumulation in obese, insulin-resistant subjects. Am J Clin Nutr. 2004;80(4):896–902.

    Article  Google Scholar 

  12. Axelsen M, et al. Breakfast glycaemic response in patients with type 2 diabetes: effects of bedtime dietary carbohydrates. Eur J Clin Nutr. 1999;53(9):706.

    Article  CAS  PubMed  Google Scholar 

  13. Benton D, Nabb S. Carbohydrate, memory, and mood. Nutr Rev. 2003;61(2):61–7.

    Article  Google Scholar 

  14. Benton D, et al. The delivery rate of dietary carbohydrates affects cognitive performance in both rats and humans. Psychopharmacology., 2003. 2003;166(1):86–90.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang G, Venkatachalam M, Hamaker BR. Structural basis for the slow digestion property of native cereal starches. Biomacromolecules. 2006;7(11):3259–66.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang G, Ao Z, Hamaker BR. Nutritional property of endosperm starches from maize mutants: a parabolic relationship between slowly digestible starch and amylopectin fine structure. J Agric Food Chem. 2008;56(12):4686.

    Article  CAS  PubMed  Google Scholar 

  17. Li X, et al. Partial branching enzyme treatment increases the low glycaemic property and α-1,6 branching ratio of maize starch. Food Chem., 2014. 2014;164:502–9.

    Article  CAS  PubMed  Google Scholar 

  18. Kim BK, et al. Branch chain elongation by amylosucrase: production of waxy corn starch with a slow digestion property. Food Chem. 2014;152:113–20.

    Article  CAS  PubMed  Google Scholar 

  19. Jiang H, et al. Enzymatic modification of corn starch with 4-α-glucanotransferase results in increasing slow digestible and resistant starch. Int J Biol Macromol. 2014;65:208–14.

    Article  CAS  PubMed  Google Scholar 

  20. Miao M, et al. Development of maize starch with a slow digestion property using maltogenic α-amylase. Carbohydr Polym. 2014;103:164–9.

    Article  CAS  PubMed  Google Scholar 

  21. Miao M, et al. Improved the slow digestion property of maize starch using partially β-amylolysis. Food Chem. 2014;152:128–32.

    Article  CAS  PubMed  Google Scholar 

  22. Englyst HN, et al. Measurement of resistant starch in vitro and in vivo. Br J Nutr. 1996;75(5):749.

    Article  CAS  PubMed  Google Scholar 

  23. Fuentes-Zaragoza E, et al. Resistant starch as prebiotic: a review. Starch-Stärke. 2011;63(7):406–15.

    Article  CAS  Google Scholar 

  24. Cummings JH, Englyst HN. Measurement of starch fermentation in the human large intestine. Can J Physiol Pharmacol. 1991;69(1):121.

    Article  CAS  PubMed  Google Scholar 

  25. Ashwar BA, et al. Preparation, health benefits and applications of resistant starch—a review. Starch-Stärke. 2016;68(3–4):287–301.

    Article  CAS  Google Scholar 

  26. Zhang B, et al. Corn porous starch: preparation, characterization and adsorption property. Int J Biol Macromol. 2012;50(1):250–6.

    Article  CAS  PubMed  Google Scholar 

  27. Chang PR, Yu J, Ma X. Preparation of porous starch and its use as a structure-directing agent for production of porous zinc oxide. Carbohydr Polym. 2011;83(2):1016–9.

    Article  CAS  Google Scholar 

  28. Qian D, Chang PR, Ma X. Preparation of controllable porous starch with different starch concentrations by the single or dual freezing process. Carbohydr Polym. 2011;86(3):1181–6.

    Article  CAS  Google Scholar 

  29. Benavent-Gil Y, Rosell CM. Comparison of porous starches obtained from different enzyme types and levels. Carbohydr Polym. 2017;157:533–40.

    Article  CAS  PubMed  Google Scholar 

  30. Li H, et al. Encapsulation of Lactobacillus plantarum in porous maize starch. LWT Food Sci Technol. 2016;74:542–9.

    Article  CAS  Google Scholar 

  31. Belingheri C, et al. Oxidative stability of high-oleic sunflower oil in a porous starch carrier. Food Chem. 2015;166:346–51.

    Article  CAS  PubMed  Google Scholar 

  32. Belingheri C, Ferrillo A, Vittadini E. Porous starch for flavor delivery in a tomato-based food application. LWT Food Sci Technol. 2015;60(1):593–7.

    Article  CAS  Google Scholar 

  33. Wang H, et al. Preparation and characterization of porous corn starch and its adsorption toward grape seed proanthocyanidins. Starch-Stärke. 2016;68(11–12):1254–63.

    Article  CAS  Google Scholar 

  34. Jiang S, et al. Adsorption of procyanidins onto chitosan-modified porous rice starch. LWT Food Sci Technol. 2017;84:10–7.

    Article  CAS  Google Scholar 

  35. Chang R, et al. Preparation and properties of the succinic ester of porous starch. Carbohydr Polym. 2012;88(2):604–8.

    Article  CAS  Google Scholar 

  36. Ma X, et al. Modification of porous starch for the adsorption of heavy metal ions from aqueous solution. Food Chem. 2015;181:133–9.

    Article  CAS  PubMed  Google Scholar 

  37. Acosta E, et al. Net-average curvature model for solubilization and supersolubilization in surfactant microemulsions. Langmuir., 2003. 2003;19(1):186–95.

    Article  CAS  Google Scholar 

  38. Moulik SP, et al. Studies on the interfacial composition and thermodynamic properties of W/O microemulsions. Langmuir. 2000;16(7):3101–6.

    Article  CAS  Google Scholar 

  39. Wang X, et al. Preparation of starch nanoparticles in water in oil microemulsion system and their drug delivery properties. Carbohydr Polym. 2016;138:192.

    Article  CAS  PubMed  Google Scholar 

  40. Bezemer JM, et al. Microspheres for protein delivery prepared from amphiphilic multiblock copolymers: 2. Modulation of release rate. J Control Release. 2000;67(2–3):249–60.

    Article  CAS  PubMed  Google Scholar 

  41. Kawashita M, et al. Preparation of ferrimagnetic magnetite microspheres for in situ hyperthermic treatment of cancer. Biomaterials. 2005;26(15):2231–8.

    Article  CAS  PubMed  Google Scholar 

  42. Sturesson C, Carlfors J. Incorporation of protein in PLG-microspheres with retention of bioactivity. J Control Release. 2000;67(2–3):171–8.

    Article  CAS  PubMed  Google Scholar 

  43. Sandhu KS, Nain V. Starch nanoparticles: their preparation and applications. In: Gahlawat SK, et al., editors. Plant biotechnology: recent advancements and developments. Singapore: Springer Singapore; 2017. p. 213–32.

    Chapter  Google Scholar 

  44. Kim H-Y, Park SS, Lim S-T. Preparation, characterization and utilization of starch nanoparticles. Colloids Surf B: Biointerfaces. 2015;126:607–20.

    Article  CAS  PubMed  Google Scholar 

  45. Ma X, et al. Fabrication and characterization of citric acid-modified starch nanoparticles/plasticized-starch composites. Biomacromolecules. 2008;9(11):3314–20.

    Article  CAS  PubMed  Google Scholar 

  46. Qin Y, et al. Characterization of starch nanoparticles prepared by nanoprecipitation: influence of amylose content and starch type. Ind Crop Prod. 2016;87:182–90.

    Article  CAS  Google Scholar 

  47. Li C, Sun P, Yang C. Emulsion stabilized by starch nanocrystals. Starch-Stärke. 2012;64(6):497–502.

    Article  CAS  Google Scholar 

  48. Ge S, et al. Characterizations of Pickering emulsions stabilized by starch nanoparticles: influence of starch variety and particle size. Food Chem. 2017;234:339–47.

    Article  CAS  PubMed  Google Scholar 

  49. Kristo E, Biliaderis CG. Physical properties of starch nanocrystal-reinforced pullulan films. Carbohydr Polym. 2007;68(1):146–58.

    Article  CAS  Google Scholar 

  50. Orsuwan A, Sothornvit R. Development and characterization of banana flour film incorporated with montmorillonite and banana starch nanoparticles. Carbohydr Polym. 2017;174:235–42.

    Article  CAS  PubMed  Google Scholar 

  51. Vasiliadou E, Raphaelides SN, Papastergiadis E. Effect of heating time and temperature on partially gelatinized starch-fatty acid interactions. LWT Food Sci Technol. 2015;60(2):698–707.

    Article  CAS  Google Scholar 

  52. Raphaelides SN, et al. A process designed for the continuous production of starch inclusion complexes on an industrial scale. Food Bioprod Process. 2015;96:245–55.

    Article  CAS  Google Scholar 

  53. Zhu F. Encapsulation and delivery of food ingredients using starch based systems. Food Chem. 2017;229:542–52.

    Article  CAS  PubMed  Google Scholar 

  54. Chen B, et al. Properties of lotus seed starch-glycerin monostearin complexes formed by high pressure homogenization. Food Chem. 2017;226:119–27.

    Article  CAS  PubMed  Google Scholar 

  55. Conde-Petit B, Escher F, Nuessli J. Structural features of starch-flavor complexation in food model systems. Trends Food Sci Technol. 2006;17(5):227–35.

    Article  CAS  Google Scholar 

  56. Ying Y, Gu ZB, Zhang GY. Delivery of bioactive conjugated linoleic acid with self-assembled amylose-CLA complex. J Agric Food Chem. 2009;57(15):7125–30.

    Article  CAS  Google Scholar 

  57. Arijaje EO, et al. Effects of chemical and enzymatic modifications on starch–stearic acid complex formation. J Agric Food Chem. 2014;62(13):2963–72.

    Article  CAS  PubMed  Google Scholar 

  58. Kong L, Ziegler GR. Formation of starch-guest inclusion complexes in electrospun starch fibers. Food Hydrocoll. 2014;38(3):211–9.

    Article  CAS  Google Scholar 

  59. Gökmen V, et al. Development of functional bread containing nanoencapsulated omega-3 fatty acids. J Food Eng. 2011;105(4):585–91.

    Article  CAS  Google Scholar 

  60. de Kruif CG, Tuinier R. Polysaccharide protein interactions. Food Hydrocoll. 2001;15(4):555–63.

    Article  Google Scholar 

  61. Mohamed AA, Rayas-Duarte P. The effect of mixing and wheat protein/gluten on the gelatinization of wheat starch. Food Chem. 2003;81(4):533–45.

    Article  CAS  Google Scholar 

  62. Shah A, et al. Rheological properties of a soluble self-assembled complex from starch, protein and free fatty acids. J Food Eng. 2011;105(3):444–52.

    Article  CAS  Google Scholar 

  63. Zhang G, et al. Self-assembly of amylose, protein, and lipid as a nanoparticle carrier of hydrophobic small molecules. Chichester: Wiley; 2015. p. 263–71.

    Google Scholar 

  64. Fan M, et al. Gel characteristics and microstructure of fish myofibrillar protein/cassava starch composites. Food Chem. 2017;218:221–30.

    Article  CAS  PubMed  Google Scholar 

  65. Philipp C, et al. Impact of protein content on physical and microstructural properties of extruded rice starch-pea protein snacks. J Food Eng. 2017;212:165–73.

    Article  CAS  Google Scholar 

  66. Otto C, et al. Comparative cleaning tests with modified protein and starch residues. J Food Eng. 2016;178:145–50.

    Article  CAS  Google Scholar 

  67. Sun N-x, et al. Interaction of starch and casein. Food Hydrocoll. 2016;60:572–9.

    Article  CAS  Google Scholar 

  68. Qu B, Zhong Q. Casein-maltodextrin conjugate as an emulsifier for fabrication of structured calcium carbonate particles as dispersible fat globule mimetics. Food Hydrocoll. 2017;66:61–70.

    Article  CAS  Google Scholar 

  69. Masina N, et al. A review of the chemical modification techniques of starch. Carbohydr Polym. 2017;157:1226–36.

    Article  CAS  PubMed  Google Scholar 

  70. Kaur L, Singh J. Starch: modified starches. In: Caballero B, Finglas PM, Toldrá F, editors. Encyclopedia of food and health. Oxford: Academic; 2016. p. 152–9.

    Chapter  Google Scholar 

  71. Biduski B, et al. Impact of acid and oxidative modifications, single or dual, of sorghum starch on biodegradable films. Food Chem. 2017;214:53–60.

    Article  CAS  PubMed  Google Scholar 

  72. Kaur B, et al. Progress in starch modification in the last decade. Food Hydrocoll. 2012;26(2):398–404.

    Article  CAS  Google Scholar 

  73. Moreau M, Orange N, Feuilloley MGJ. Non-thermal plasma technologies: new tools for bio-decontamination. Biotechnol Adv. 2008;26(6):610–7.

    Article  CAS  PubMed  Google Scholar 

  74. Mir SA, Shah MA, Mir MM. Understanding the role of plasma technology in food industry. Food Bioprocess Technol. 2015;9(5):1–17.

    Google Scholar 

  75. Zhu F. Plasma modification of starch. Food Chem. 2017;232:476–86.

    Article  CAS  PubMed  Google Scholar 

  76. Andrade CT, et al. Surface modification of maize starch films by low-pressure glow 1-butene plasma. Carbohydr Polym. 2005;61(4):407–13.

    Article  CAS  Google Scholar 

  77. Alves CM, et al. Modulating bone cells response onto starch-based biomaterials by surface plasma treatment and protein adsorption. Biomaterials. 2007;28(2):307–15.

    Article  CAS  PubMed  Google Scholar 

  78. Jacobs H, Delcour JA. Hydrothermal modifications of granular starch, with retention of the granular structure: a review. J Agric Food Chem. 1998;46(8):2895–905.

    Article  CAS  Google Scholar 

  79. Zavareze EdR, Dias ARG. Impact of heat-moisture treatment and annealing in starches: a review. Carbohydr Polym. 2011;83(2):317–28.

    Article  CAS  Google Scholar 

  80. Jayakody L, Hoover R. Effect of annealing on the molecular structure and physicochemical properties of starches from different botanical origins-a review. Carbohydr Polym. 2008;74(3):691–703.

    Article  CAS  Google Scholar 

  81. Gomes AMM, Mendes da Silva CE, Ricardo NMS. Effects of annealing on the physicochemical properties of fermented cassava starch (polvilho azedo). Carbohydr Polym. 2005;60(1):1–6.

    Article  CAS  Google Scholar 

  82. Chung H-J, Hoover R, Liu Q. The impact of single and dual hydrothermal modifications on the molecular structure and physicochemical properties of normal corn starch. Int J Biol Macromol. 2009;44(2):203–10.

    Article  CAS  PubMed  Google Scholar 

  83. Hoover R. The impact of heat-moisture treatment on molecular structures and properties of starches isolated from different botanical sources. Crit Rev Food Sci Nutr. 2010;50(9):835.

    Article  CAS  Google Scholar 

  84. Zhu F. Impact of ultrasound on structure, physicochemical properties, modifications, and applications of starch. Trends Food Sci Technol. 2015;43(1):1–17.

    Article  CAS  Google Scholar 

  85. Hu A, et al. Ultrasonic frequency effect on corn starch and its cavitation. LWT Food Sci Technol. 2015;60(2):941–7.

    Article  CAS  Google Scholar 

  86. Sujka M. Ultrasonic modification of starch-impact on granules porosity. Ultrason Sonochem. 2017;37:424–9.

    Article  CAS  PubMed  Google Scholar 

  87. Tian Y, et al. Effect of high hydrostatic pressure (HHP) on slowly digestible properties of rice starches. Food Chem. 2014;152:225–9.

    Article  CAS  PubMed  Google Scholar 

  88. Ahmed J, et al. Impact of high pressure treatment on functional, rheological, pasting, and structural properties of lentil starch dispersions. Carbohydr Polym. 2016;152:639–47.

    Article  CAS  PubMed  Google Scholar 

  89. Błaszczak W, Valverde S, Fornal J. Effect of high pressure on the structure of potato starch. Carbohydr Polym. 2005;59(3):377–83.

    Article  CAS  Google Scholar 

  90. Hu X-P, et al. Effect of high hydrostatic pressure and retrogradation treatments on structural and physicochemical properties of waxy wheat starch. Food Chem. 2017;232:560–5.

    Article  CAS  PubMed  Google Scholar 

  91. Li W, et al. Recrystallization characteristics of high hydrostatic pressure gelatinized normal and waxy corn starch. Int J Biol Macromol. 2016;83:171–7.

    Article  CAS  PubMed  Google Scholar 

  92. Villamonte G, Jury V, de Lamballerie M. Stabilizing emulsions using high-pressure-treated corn starch. Food Hydrocoll. 2016;52:581–9.

    Article  CAS  Google Scholar 

  93. Paquin P. Technological properties of high pressure homogenizers: the effect of fat globules, milk proteins, and polysaccharides. Int Dairy J. 1999;9(3–6):329–35.

    Article  CAS  Google Scholar 

  94. Brookman JSG. Mechanism of cell disintegration in a high pressure homogenizer. Biotechnol Bioeng. 1974;16(3):371–83.

    Article  Google Scholar 

  95. Tribst AAL, Franchi MA, Cristianini M. Ultra-high pressure homogenization treatment combined with lysozyme for controlling Lactobacillus brevis contamination in model system. Innovative Food Sci Emerg Technol. 2008;9(3):265–71.

    Article  CAS  Google Scholar 

  96. Wei B, et al. Disruption and molecule degradation of waxy maize starch granules during high pressure homogenization process. Food Chem. 2018;240:165–73.

    Article  CAS  PubMed  Google Scholar 

  97. Floury J, et al. Degradation of methylcellulose during ultra-high pressure homogenisation. Food Hydrocoll. 2002;16(1):47–53.

    Article  CAS  Google Scholar 

  98. Meng S, et al. Preparation of corn starch–fatty acid complexes by high-pressure homogenization. Starch-Stärke. 2015;66(9–10):809–17.

    Google Scholar 

  99. Antonietti M, Landfester K. Polyreactions in miniemulsions. Macromol Rapid Commun. 2001;22(12):689–757.

    Google Scholar 

  100. Masatcioglu TM, Sumer Z, Koksel H. An innovative approach for significantly increasing enzyme resistant starch type 3 content in high amylose starches by using extrusion cooking. J Cereal Sci. 2017;74:95–102.

    Article  CAS  Google Scholar 

  101. Lai LS, Kokini JL. Physicochemical changes and rheological properties of starch during extrusion (a review). Biotechnol Prog. 1991;7(3):251–66.

    Article  CAS  Google Scholar 

  102. Zhang B, et al. Extrusion induced low-order starch matrices: enzymatic hydrolysis and structure. Carbohydr Polym. 2015;134:485–96.

    Article  CAS  PubMed  Google Scholar 

  103. Liu W-C, Halley PJ, Gilbert RG. Mechanism of degradation of starch, a highly branched polymer, during extrusion. Macromolecules. 2010;43(6):2855–64.

    Article  CAS  Google Scholar 

  104. Liu X, et al. Shear degradation of corn starches with different amylose contents. Food Hydrocoll. 2017;66:199–205.

    Article  CAS  Google Scholar 

  105. Zhang Y, et al. Retrogradation behaviour of high-amylose rice starch prepared by improved extrusion cooking technology. Food Chem. 2014;158:255–61.

    Article  CAS  PubMed  Google Scholar 

  106. Ye J, et al. Freeze-thaw stability of rice starch modified by improved extrusion cooking technology. Carbohydr Polym. 2016;151:113–8.

    Article  CAS  PubMed  Google Scholar 

  107. Li M, et al. Extrusion processing and characterization of edible starch films with different amylose contents. J Food Eng. 2011;106(1):95–101.

    Article  CAS  Google Scholar 

  108. Mościcki L, et al. Application of extrusion-cooking for processing of thermoplastic starch (TPS). Food Res Int. 2012;47(2):291–9.

    Article  CAS  Google Scholar 

  109. De Pilli T, et al. Study of starch-lipid complexes in model system and real food produced using extrusion-cooking technology. Innovative Food Sci Emerg Technol. 2011;12(4):610–6.

    Article  CAS  Google Scholar 

  110. Rathod RP, Annapure US. Physicochemical properties, protein and starch digestibility of lentil based noodle prepared by using extrusion processing. LWT Food Sci Technol. 2017;80:121–30.

    Article  CAS  Google Scholar 

  111. Tian Y, et al. Starch sodium dodecenyl succinate prepared by one-step extrusion and its properties. Carbohydr Polym. 2015;133:90–3.

    Article  CAS  PubMed  Google Scholar 

  112. Chandrasekaran S, Ramanathan S, Basak T. Microwave food processing-a review. Food Res Int. 2013;52(1):243–61.

    Article  CAS  Google Scholar 

  113. Yang Q, et al. Effect of microwave irradiation on internal molecular structure and physical properties of waxy maize starch. Food Hydrocoll. 2017;69:473–82.

    Article  CAS  Google Scholar 

  114. Bra M, et al. Behaviour of starch exposed to microwave radiation treatment. Starch-Stärke. 2014;66(1–2):3–14.

    Google Scholar 

  115. Lin D, et al. Study on the synthesis and physicochemical properties of starch acetate with low substitution under microwave assistance. Int J Biol Macromol. 2017;103:316–26.

    Article  CAS  PubMed  Google Scholar 

  116. Deng Y, J.M. Catchmark, insoluble starch composite foams produced through microwave expansion. Carbohydr Polym. 2014;111:864–9.

    Article  CAS  PubMed  Google Scholar 

  117. Zhu J, et al. Multi-scale structural changes of starch-based material during microwave and conventional heating. Int J Biol Macromol. 2016;92:270–7.

    Article  CAS  PubMed  Google Scholar 

  118. Mutlu S, Kahraman K, Öztürk S. Optimization of resistant starch formation from high amylose corn starch by microwave irradiation treatments and characterization of starch preparations. Int J Biol Macromol. 2017;95:635–42.

    Article  CAS  PubMed  Google Scholar 

  119. Gübitz GM, Paulo AC. New substrates for reliable enzymes: enzymatic modification of polymers. Curr Opin Biotechnol. 2003;14(6):577–82.

    Article  PubMed  CAS  Google Scholar 

  120. Xin J-Y, et al. Biosynthesis of corn starch palmitate by Lipase Novozym 435. Int J Mol Sci. 2012;13(6):7226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Chakraborty S, et al. Enzyme-catalyzed regioselective modification of starch nanoparticles. Macromolecules. 2005;38(1):61–8.

    Article  CAS  Google Scholar 

  122. Alissandratos A, et al. Lipase-catalysed acylation of starch and determination of the degree of substitution by methanolysis and GC. BMC Biotechnol. 2010;10(1):82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Shogren RL, Biswas A. Preparation of starch–sodium lignosulfonate graft copolymers via laccase catalysis and characterization of antioxidant activity. Carbohydr Polym. 2013;91(2):581–5.

    Article  CAS  PubMed  Google Scholar 

  124. Liu G, et al. Structure, functionality and applications of debranched starch: a review. Trends Food Sci Technol. 2017;63:70–9.

    Article  CAS  Google Scholar 

  125. Cai L, Shi Y-C. Self-assembly of short linear chains to A- and B-type starch spherulites and their enzymatic digestibility. J Agric Food Chem. 2013;61(45):10787–97.

    Article  CAS  PubMed  Google Scholar 

  126. Chiu CW, Mason WR. Method of replacing fats with short chain amylose. 1998. U.S. Patent 5711986.

    Google Scholar 

  127. Luckett CR, Wang YJ. Application of enzyme-treated corn starches in breakfast cereal coating. J Food Sci. 2012;77(8):901–6.

    Article  CAS  Google Scholar 

  128. Liu G, et al. Preparation and characterization of pullulanase debranched starches and their properties for drug controlled-release. RSC Adv. 2015;5(117):97066–75.

    Article  CAS  Google Scholar 

  129. Roussel X, et al. Characterization of substrate and product specificity of the purified recombinant glycogen branching enzyme of Rhodothermus obamensis. Biochim Biophys Acta Gen Subj. 2013;1830(1):2167–77.

    Article  CAS  Google Scholar 

  130. Takata H, et al. Industrial production of branching enzyme, and its application for producing a highly branched cyclic dextrin, Cluster DextrinTM. Seibutsu-kogaku Kaishi. 2006;84(2):61–6.

    CAS  Google Scholar 

  131. Tian Y, et al. Highly branched dextrin prepared from high-amylose maize starch using waxy rice branching enzyme (WRBE). Food Chem. 2016;203:530.

    Article  CAS  PubMed  Google Scholar 

  132. Lee B-H, et al. Enzyme-synthesized highly branched maltodextrins have slow glucose generation at the mucosal α-glucosidase level and are slowly digestible in vivo. PLoS One. 2013;8(4):e59745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kawabata Y, et al. Preparation of highly branched starch by glycogen branching enzyme from Neurospora crassa N2-44 and its characterization. J Appl Glycosci., 2002. 2002;49(3):273–9.

    Article  CAS  Google Scholar 

  134. Kaper T, et al. Exploring and exploiting starch-modifying amylomaltases from thermophiles. Biochem Soc Trans. 2004;32(2):279–82.

    Article  CAS  PubMed  Google Scholar 

  135. Arnoc A, et al. Improved creaminess of low-fat yoghurt: the impact of amylomaltase-treated starch domains. Food Hydrocoll. 2009;23(3):980–7.

    Article  CAS  Google Scholar 

  136. Euverink GJW, Binnema DJ. Use of modified starch as an agent for forming a thermoreversible gel. 2005. US.

    Google Scholar 

  137. Zhang H, et al. Enzymatically modified waxy corn starch with amylosucrase: the effect of branch chain elongation on structural and physicochemical properties. Food Hydrocoll. 2017;63:518–24.

    Article  CAS  Google Scholar 

  138. Z A, et al. Starch with a slow digestion property produced by altering its chain length, branch density, and crystalline structure. J Agric Food Chem. 2007;55(11):4540–7.

    Article  CAS  Google Scholar 

  139. Dura A, Rosell CM. Physico-chemical properties of corn starch modified with cyclodextrin glycosyltransferase. Int J Biol Macromol. 2016;87:466–72.

    Article  CAS  PubMed  Google Scholar 

  140. Wu CS, et al. Molecular characterization and in vitro digestibility of normal maize starch hydrolyzed by maltotriohydrolase. Int J Biol Macromol. 2015;74:283–8.

    Article  CAS  PubMed  Google Scholar 

  141. Jo AR, et al. Preparation of slowly digestible sweet potato Daeyumi starch by dual enzyme modification. Carbohydr Polym. 2016;143:164–71.

    Article  CAS  PubMed  Google Scholar 

  142. Luo Z, Xu Z. Characteristics and application of enzyme-modified carboxymethyl starch in sausages. LWT Food Sci Technol. 2011;44(10):1993–8.

    Article  CAS  Google Scholar 

  143. Sun B, et al. Effect of acid-ethanol treatment and debranching on the structural characteristics and digestible properties of maize starches with different amylose contents. Food Hydrocoll. 2017;69:229–35.

    Article  CAS  Google Scholar 

  144. Hung PV, Vien NL, Lan Phi NT. Resistant starch improvement of rice starches under a combination of acid and heat-moisture treatments. Food Chem. 2016;191:67–73.

    Article  CAS  PubMed  Google Scholar 

  145. Barrera GN, et al. Evaluation of the mechanical damage on wheat starch granules by SEM, ESEM, AFM and texture image analysis. Carbohydr Polym. 2013;98(2):1449–57.

    Article  CAS  PubMed  Google Scholar 

  146. Klang V, Valenta C, Matsko NB. Electron microscopy of pharmaceutical systems. Micron. 2013;44:45–74.

    Article  CAS  PubMed  Google Scholar 

  147. Reimer L. Image formation in low-voltage scanning electron microscopy. Washington: SPIE Opt Eng Press; 1993. p. 89–96.

    Book  Google Scholar 

  148. Tang CY, Yang Z. Transmission electron microscopy (TEM). In: Hilal N, Ismail A, Matsuura T, Oatley-Radcliffe D, editors. Membrane characterization. Amesterdan: Elsevier; 2017. p. 145–59.

    Chapter  Google Scholar 

  149. Yang J, et al. Fabrication and characterization of hollow starch nanoparticles by gelation process for drug delivery application. Carbohydr Polym. 2017;173:223–32.

    Article  CAS  PubMed  Google Scholar 

  150. Meyer E. Atomic force microscopy. Prog Surf Sci. 1992;41(1):3–49.

    Article  CAS  Google Scholar 

  151. Zhou P, Labuza TP. Analytical methods | differential scanning calorimetry A2 – Fuquay, John W. In: Encyclopedia of dairy sciences (2nd edn). San Diego: Academic; 2011. p. 256–63.

    Chapter  Google Scholar 

  152. Jenkins PJ, Donald AM. Gelatinisation of starch: a combined SAXS/WAXS/DSC and SANS study. Carbohydr Res. 1998;308(2):133–47.

    Article  CAS  Google Scholar 

  153. Eliasson AC. Interactions between starch and lipids studied by DSC. Thermochim Acta. 1994;246(2):343–56.

    Article  CAS  Google Scholar 

  154. Fisher DK, Thompson DB. Retrogradation of maize starch after thermal treatment within and above the gelatinization temperature range. Cereal Chem. 2007;74(3):344–51.

    Article  Google Scholar 

  155. And KT, Reid DS. Differential scanning calorimetry study of glass transition in frozen starch gels. J Agric Food Chem. 2004;52(13):4308–17.

    Article  CAS  Google Scholar 

  156. Sarko A, Wu HC. The crystal structures of A-, B- and C-polymorphs of amylose and starch. Starch-Stärke. 1978;30(3):73–8.

    Article  CAS  Google Scholar 

  157. Cheetham NWH, Tao L. Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study. Carbohydr Polym. 1998;36(4):277–84.

    Article  CAS  Google Scholar 

  158. Liu PL, Hu XS, Shen Q. Effect of high hydrostatic pressure on starches: a review. Starch-Stärke. 2010;62(12):615–28.

    Article  CAS  Google Scholar 

  159. Tester RF, Karkalas J, Qi X. Starch-composition, fine structure and architecture. J Cereal Sci. 2004;39(2):151–65.

    Article  CAS  Google Scholar 

  160. Pérez S, Bertoft E. The molecular structures of starch components and their contribution to the architecture of starch granules: a comprehensive review. Starch-Stärke., 2010. 2010;62(8):389–420.

    Article  CAS  Google Scholar 

  161. Kuang Q, et al. Lamellar structure change of waxy corn starch during gelatinization by time-resolved synchrotron SAXS. Food Hydrocoll. 2017;62:43–8.

    Article  CAS  Google Scholar 

  162. Blazek J, Gilbert EP. Application of small-angle X-ray and neutron scattering techniques to the characterisation of starch structure: a review. Carbohydr Polym. 2011;85(2):281–93.

    Article  CAS  Google Scholar 

  163. Gidley MJ. Quantification of the structural features of starch polysaccharides by N.M.R. spectroscopy. Carbohydr Res. 1985;139:85–93.

    Article  CAS  Google Scholar 

  164. Zhu F. NMR spectroscopy of starch systems. Food Hydrocoll. 2017;63:611–24.

    Article  CAS  Google Scholar 

  165. Dunn LB, Krueger WJ. Branching ratios of starch via proton nuclear magnetic resonance and their use in determining amylose/amylopectin content: evidence for three types of amylopectin. Macromol Symp. 1999;140(1):179–86.

    Article  CAS  Google Scholar 

  166. Flanagan BM, Gidley MJ, Warren FJ. Rapid quantification of starch molecular order through multivariate modelling of 13C CP/MAS NMR spectra. Chem Commun. 2015;51(80):14856–8.

    Article  CAS  Google Scholar 

  167. Le Bail P, Rondeau C, Buléon A. Structural investigation of amylose complexes with small ligands: helical conformation, crystalline structure and thermostability. Int J Biol Macromol. 2005;35(1):1–7.

    Article  CAS  Google Scholar 

  168. Muhrbeck P, Tellier C. Determination of the phosphorylation of starch from native potato varieties by 31P NMR. Starch-Stärke. 1991;43(1):25–7.

    Article  CAS  Google Scholar 

  169. Genkina NK, Kurkovskaya LN. A novel method for the determination of phospholipids in starch matrixes. J Anal Chem. 2013;68(2):170–2.

    Article  CAS  Google Scholar 

  170. Kaur L, Singh N, Sodhi NS. Some properties of potatoes and their starches II. Morphological, thermal and rheological properties of starches. Food Chem. 2002;79(2):183–92.

    Article  CAS  Google Scholar 

  171. Kaur L, et al. Some properties of potatoes and their starches I. Cooking, textural and rheological properties of potatoes. Food Chem. 2002;79(2):177–81.

    Article  CAS  Google Scholar 

  172. Singh N, et al. Morphological, thermal and rheological properties of starches from different botanical sources. Food Chem. 2003;81(2):219–31.

    Article  CAS  Google Scholar 

  173. Singh J, Kaur L, Mccarthy OJ. Factors influencing the physico-chemical, morphological, thermal and rheological properties of some chemically modified starches for food applications – a review. Food Hydrocoll. 2007;21(1):1–22.

    Article  CAS  Google Scholar 

  174. Shah A, et al. Dual enzyme modified oat starch: structural characterisation, rheological properties, and digestibility in simulated GI tract. Int J Biol Macromol. 2017. in press.

    Google Scholar 

  175. López OV, Zaritzky NE, García MA. Physicochemical characterization of chemically modified corn starches related to rheological behavior, retrogradation and film forming capacity. J Food Eng. 2010;100(1):160–8.

    Article  CAS  Google Scholar 

  176. Zhu F, Wang Y-J. Characterization of modified high-amylose maize starch-α-naphthol complexes and their influence on rheological properties of wheat starch. Food Chem. 2013;138(1):256–62.

    Article  CAS  PubMed  Google Scholar 

  177. Gidley MJ, et al. Reliable measurements of the size distributions of starch molecules in solution: current dilemmas and recommendations. Carbohydr Polym. 2010;79(2):255–61.

    Article  CAS  Google Scholar 

  178. Harding SE, Adams GG, Gillis RB. Molecular weight analysis of starches: which technique? Starch-Stärke. 2016;68(9–10):846–53.

    Article  CAS  Google Scholar 

  179. Li C, Godwin ID, Gilbert RG. Diurnal changes in Sorghum leaf starch molecular structure. Plant Sci. 2015;239:147–54.

    Article  CAS  PubMed  Google Scholar 

  180. Zhong F, et al. Rice starch, amylopectin, and amylose: molecular weight and solubility in dimethyl sulfoxide-based solvents. J Agric Food Chem. 2006;54(6):2320–6.

    Article  CAS  PubMed  Google Scholar 

  181. Peng X, Yao Y. Carbohydrates as fat replacers. Annu Rev Food Sci Technol. 2017;8(1):331.

    Article  CAS  PubMed  Google Scholar 

  182. Malinski E, et al. Isolation of small starch granules and determination of their fat mimic characteristics. Cereal Chem. 2007;80(1):1–4.

    Article  Google Scholar 

  183. Radi M, Niakousari M, Amiri S. Physicochemical, textural and sensory properties of low-fat yogurt produced by using modified wheat starch as a fat replacer. J Appl Sci. 2009;9(11):2194–7.

    Article  CAS  Google Scholar 

  184. Tesch S, Gerhards C, Schubert H. Stabilization of emulsions by OSA starches. J Food Eng. 2002;54(2):167–74.

    Article  Google Scholar 

  185. Ma Y, et al. Enzymatic hydrolysis of corn starch for producing fat mimetics. J Food Eng. 2006;73(3):297–303.

    Article  CAS  Google Scholar 

  186. Lobato-Calleros C, et al. Impact of native and chemically modified starches addition as fat replacers in the viscoelasticity of reduced-fat stirred yogurt. J Food Eng. 2014;131(3):110–5.

    Article  CAS  Google Scholar 

  187. Qi Z, Xu A. Starch-based ingredients for flavor encapsulation. Cereal Foods World., 1999. 1999;44:460–5.

    Google Scholar 

  188. Li Z, et al. A review: using nanoparticles to enhance absorption and bioavailability of phenolic phytochemicals. Food Hydrocoll. 2015;43:153–64.

    Article  CAS  Google Scholar 

  189. López-Córdoba A, et al. Cassava starch films containing rosemary nanoparticles produced by solvent displacement method. Food Hydrocoll. 2017;71:26–34.

    Article  CAS  Google Scholar 

  190. Jiménez A, et al. Edible and biodegradable starch films: a review. Food Bioprocess Technol. 2012;5(6):2058–76.

    Article  CAS  Google Scholar 

  191. Mukurumbira AR, Mellem JJ, Amonsou EO. Effects of amadumbe starch nanocrystals on the physicochemical properties of starch biocomposite films. Carbohydr Polym. 2017;165:142–8.

    Article  CAS  PubMed  Google Scholar 

  192. Shah U, et al. Art and science behind modified starch edible films and coatings: a review. Compr Rev Food Sci Food Saf. 2004;15(3):568–80.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, C., Zhou, X. (2018). The Overview of Functional Starch. In: Jin, Z. (eds) Functional Starch and Applications in Food. Springer, Singapore. https://doi.org/10.1007/978-981-13-1077-5_1

Download citation

Publish with us

Policies and ethics