Skip to main content

Memory Management Strategy for PCM-Based IoT Cloud Server

  • Conference paper
  • First Online:
Mobile and Wireless Technology 2018 (ICMWT 2018)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 513))

Included in the following conference series:

  • 898 Accesses

Abstract

Most large-scale data server systems are having difficulties applying modern data usage patterns to such systems because recent data request patterns of users are sequential, and users tend to request up-to-date data. In this regard, customized systems are necessary for handling such requests efficiently. This paper deals with issues related to how conventional large-scale data server systems utilize memory, and how data are stored in storage devices. In addition, the paper analyzes data usage patterns of users, utilizing a cold storage system, and proposes a main memory system based on the analysis. This paper proposes a hybrid main memory system that utilizes DRAM and phase change memory (PCM). PCM is regarded as the next generation of non-volatile memory. Using a main memory that utilizes PCM, which operates similar to DRAM, and non-volatile storage, the proposed system improves the data processing efficiency. The paper also proposes an algorithm for processing data with the use of DRAM as a buffer. In addition, the paper proposes a system architecture with a tree-type block data and hash-type data block link. Moreover, this study compares the performance of an existing system with that of the proposed system using sequential and random data workloads. The results of the comparison show that performance improves by 10% when using a sequential data load, and remains almost at the same level when using a random data workload.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bashir M, Gill A (2016) Towards an IoT big data analytics framework: smart buildings systems. In: 2016 IEEE 18th international conference on high performance computing and communications, pp 1326–1332

    Google Scholar 

  2. Cai H, Xu B, Jiang L, Vasilakos AV (2017) IoT-based big data storage system in cloud computing: perspectives and challenges. IEEE Internet Things J 4(1):75–87

    Google Scholar 

  3. Kang W, Lee S, Moon B, Kee Y, Oh M (2014) Durable write cache in flash memory SSD for relational and NoSQL databases. In: Proceedings of the 2014 ACM SIGMOD international conference on management of data, pp 529–540

    Google Scholar 

  4. Malladi KT, Lee BC, Nothaft FA, Kozyrakis C, Periyathambi K, Horowitz M (2012) Towards energy-proportional datacenter memory with mobile DRAM. In: Proceedings of the 39th annual international symposium on computer architecture, pp 37–48

    Google Scholar 

  5. Grabner H, Nater F, Druey M, Gool LV (2013) Visual interestingness in image sequences. In: Proceedings of the 21th ACM international conference on multimedia, pp 1017–1026

    Google Scholar 

  6. Pakbaznia E, Pedram M (2009) Minimizing data center cooling and server power coasts. In: ISLPED’09 proceedings of the 2009 ACM/IEEE international symposium on low power electronics and design, pp 145–150

    Google Scholar 

  7. Gajic RB, Appuswamy R, Ailamaki A (2016) Cheap data analytics using cold storage devices. Proc VLDB Endowment 9(12):1029–1040

    Article  Google Scholar 

  8. Zhong K, Zhu X, Wang T, Zhang D, Lue X, Liu D, Liu W, Sha EHH (2014) DR. Swap: energy-efficient paging for smartphones. In: Proceedings of the 2014 international symposium on low power electronics and design, pp 81–86

    Google Scholar 

  9. Fan J, Jiang S, Shu J, Sun L, Hu Q (2014) WL-reviver: a framework for reviving any wear-leveling techniques in the face of failures on phase change memory. In: 44th annual IEEE/IFIP international conference on dependable systems and networks, pp 228–239

    Google Scholar 

  10. Qureshi MK, Karidis J, Franceschini M, Srinivasan V, Lastras L, Abali B (2009) Enhancing lifetime and security of PCM-based main memory with start-gap wear leveling. In: Proceedings of the 42nd annual IEEE/ACM international symposium on microarchitecture, pp 14–23

    Google Scholar 

  11. Coburn J, Caulfield AM, Akel A, Grupp LM, Cupta RK, Jhala R, Swanson S (2011) NV-heaps: making persistent objects fast and safe with next-generation, non-volatile memories. In: Proceedings of the sixteenth international conference on Architectural support for programming languages and operating systems, pp 105–108

    Google Scholar 

  12. Hennessy JL, Patterson DA (2011) Computer architecture: a quantitative approach, 5th edn. Morgan Kaufmann, Burlington, pp 72–78

    Google Scholar 

  13. Yu M, Rexford J (2009) Hash, don’t cache: fast packet forwarding for enterprise edge routers. In: Proceedings of the 1st ACM workshop on research on enterprise networking, pp 37–44

    Google Scholar 

  14. Lu Y, Sun H, Wang X, Liu X (2014) R-Memcached: a consistent cache replication scheme with Memcached. In: Proceedings of the Posters & Demos Session, pp 29–30

    Google Scholar 

Download references

Acknowledgements

This work was supported by Basic Science Research through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A3B04031440).

This study was also supported by 2017 Research Grant from Kangwon National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Se Jin Kwon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Noh, T.H., Kwon, S.J. (2019). Memory Management Strategy for PCM-Based IoT Cloud Server. In: Kim, K., Kim, H. (eds) Mobile and Wireless Technology 2018. ICMWT 2018. Lecture Notes in Electrical Engineering, vol 513. Springer, Singapore. https://doi.org/10.1007/978-981-13-1059-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1059-1_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1058-4

  • Online ISBN: 978-981-13-1059-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics