Skip to main content

Good Agricultural Practices and Monitoring of Herbicide Residues in India

  • Chapter
  • First Online:
Herbicide Residue Research in India

Part of the book series: Environmental Chemistry for a Sustainable World ((ECSW,volume 12))

Abstract

Herbicides have proved very effective for the control of weeds in cropped areas in India. However, the herbicide use in the country is far less as compared to insecticides and fungicides. While persistent herbicides remain in crops, soil, ground and surface water for a considerable period of time, they may pose hazard to human and animal life as well as the environment. From risk assessment point of view, herbicide residues are monitored through multi-location supervised field trials at various centres of ICAR-sponsored All India Network Project (AINP) on Pesticide Residues and DAC-sponsored central sector scheme on Monitoring of Pesticide Residues at National Level at IARI New Delhi, and All India Coordinated Project on Weed Management (AICRP-WM) at the Directorate of Weed Research, Jabalpur. Besides focusing on weeds and weed management strategies, these laboratories generate globally acceptable data under good agricultural practices (GAP) for export certification and international trade. So far, edible commodities in India have been found to be mostly safe from herbicide residues. Since in future, the herbicide use is likely to increase, therefore herbicide residues problems will be more frequent and may have implications for human health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aktar MW, Gupta A, Gade V (2007) Fate and behavior of benthiocarb, a herbicide in transplanted paddy under East-Indian climatic condition. Bull Environ Contam Toxicol 79:646–649

    Article  CAS  Google Scholar 

  • Aktar MW, Gupta D, Alam S, Chowdhury A (2009) Degradation dynamics of a dinitro aniline herbicide (trifluralin) in/on blackgram (Vigna mungo) under East-Indian climatic condition. Electron J Environ Agric Food Chem 8(11):1172–1177

    CAS  Google Scholar 

  • Belz RG, Duke SO (2014) Herbicides and plant hormesis. Pest Manag Sci 70(5):698–707

    Article  CAS  Google Scholar 

  • Bhatti KH, Parveen T, Farooq A, Nawaz K, Hussain K, Siddiqui EH (2013) A critical review on herbicide resistance in plants. World Appl Sci J 27(8):1027–1036

    CAS  Google Scholar 

  • Biswas PK, Kumar S, Mitra SR, Bhattacharyya A (2007) Persistence of napropamide in/on tea under North-East Indian climatic condition. Bull Environ Contam Toxicol 79:566–569

    Article  CAS  Google Scholar 

  • Blus JL, Charles JH (1997) Field studies on pesticides and birds: unexpected and unique relations. Ecol Appl 7(4):1125–1132. https://doi.org/10.1890/1051–0761(1997)007[1125:FSOPAB]2.0.CO;2

    Article  Google Scholar 

  • Chhonkar RS, Malik RK (2002) Isoproturon-resistant littleseed canary grass (Phalaris minor) and its response to alternate herbicides. Weed Technol 16:116–123

    Article  Google Scholar 

  • Chhonkar RS, Sharma RK (2008) Multiple herbicide resistance in littleseed canary grass (Phalaris minor): a threat to wheat production in India. Weed Biol Manag 8(2):112–123

    Article  Google Scholar 

  • Dinis-Oliveira RJ, Remião F, Carmo H, Duarte JA, Sánchez NA, Bastos ML, Carvalho F (2006) Paraquat exposure as an etiological factor of Parkinson’s disease. Neurobehav Toxicol 27(6):110–112

    Google Scholar 

  • Duary B (2008) Recent advances in herbicide resistance in weeds and its management. Indian J Weed Sci 40(3&4):124–135

    Google Scholar 

  • FAO (2003) Herbicide-resistance management in developing countries (Bernal E. Valverde.) In: Labrada R (ed) Weed management for developing countries addendum 1 FAO plant production and protection paper 120 Add. 1. http://www.fao.org/docrep/006/Y5031E/y5031e0h.htm

  • FAO (2004) Good agricultural practices – a working concept. Background paper for the FAO Internal Workshop on Good Agricultural Practices. Accessed from ftp://ftp.fao.org/docrep/fao/010/ag856e/ag856e00.pdf

  • FSSAI (2015) Food safety standard authority of India, fixation of MRL. http://www.fssai.gov.in/Portals/0/Pdf/Draft_WTO_Notification_Pesticides_23_11_2015

  • FAO/WHO (2016) Codex pesticides residues in food online database. Pesticide residues in food and feed. http://www.fao.org/fao-who-codexalimentarius-texts/dbs/pestres/en/

  • Gorell JM, Johnson CC, Rybicki BA, Peterson EL, Richardson RJ (1998) The risk of Parkinson’s disease with exposure to pesticides, farming, well water, and rural living. Neurology 50(5):1346–1350

    Article  CAS  Google Scholar 

  • Havens PL, Sims GK, Erhardt-Zabik S (1995) Fate of herbicides in the environment. In: Handbook of weed management systems. M. Dekker, New York, pp 245–278

    Google Scholar 

  • Hawaldar S, Agasimani CA (2012) Effect of herbicides on weed control and productivity of maize (Zea mays L.). Karnataka J Agric Sci 25(1):137–139

    Google Scholar 

  • Hayes TB, Collins A, Lee M et al (2002) Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses. Proc Natl Acad Sci 99(8):5476–5480

    Article  CAS  Google Scholar 

  • Hiller E, VeronikaTatarkova V, Alexandra Simonovicova A, Bartal M (2012) Sorption, desorption, and degradation of (4- chloro-2-methylphenoxy) acetic acid in representative soils of the Danubian Lowland, Slovakia. Chemosphere 87(5):437–444

    Article  CAS  Google Scholar 

  • Janaki P, Sharmal N, Chinnusamy C, Sakthivel N, Nithya C (2015) Herbicide residues and their management strategies. Indian J Weed Sci 47(3):329–344

    Google Scholar 

  • Kanwar JS, Sekhon GS (1998) Nutrient management for sustainable intensive agriculture. Fertil News 43:33–40

    Google Scholar 

  • Kaur R, Gill BS (2012) Analysis of herbicide residues in celery seeds. Indian J Ecol 39(2):258–260

    Google Scholar 

  • Kettles MK, Browning SR, Prince TS, Horstman SW (1997) Triazine herbicide exposure and breast cancer incidence: an ecologic study of Kentucky counties. Environ Health Perspect 105(11):1222–1227

    Article  CAS  Google Scholar 

  • Kogevinas M, Becher H, Benn T, Bertazzi PA, Boffetta P, Bueno-de-Mesquita HB, Coggon D, Colin D, Flesch-Janys D, Fingerhut M, Green L, Kauppinen T, Littorin M, Lynge E, Mathews JD, Neuberger M, Pearce N, Saracci R (1997) Cancer mortality in workers exposed to phenoxy herbicides, chlorophenols, and dioxins. An expanded and updated international cohort study. Am J Epidemiol 145(12):1061–1051

    Article  CAS  Google Scholar 

  • Kulshrestha G, Singh SB, Gautam KC (1995) Residues of fluazifop-P-butyl following application to soybean. Bull Environ Contam Toxicol 55(2):276–282

    Article  CAS  Google Scholar 

  • Lagana A, Bacaloni A, deLeva I, Faberi A, Fago G, Aal M (2002) Occurrence and determination of herbicides and their major transformation products in environmental waters. Anal Chim Acta 462(2):187–198

    Article  CAS  Google Scholar 

  • Loos R, Locoro G, Comero S, Contini S, Schwesig D, Werres F, Balsaa P, Gans O, Weiss S, Blaha L, Bolchi M, Gawlik BM (2010) Pan-European survey on the occurrence of selected polar organic persistent pollutants in ground water. Water Res 44(14):4115–4126

    Article  CAS  Google Scholar 

  • MacKinnon DS, Freedman B (1993) Effects of silvicultural use of the herbicide glyphosate on breeding birds of regenerating clear cuts in Nova Scotia, Canada. J Appl Ecol 30(3):395–406

    Article  CAS  Google Scholar 

  • Malik RK, Singh S (1995) Littleseed canary grass (Phalaris minor) resistance to isoproturon in India. Weed Technol 9:419–425

    Article  Google Scholar 

  • Michalopoulos S (2016) EurActiv.com (updated: Jul 12, 2016). http://www.euractiv.com/section/agriculture-food/news/eu-agrees-ban-on-glyphosate-co-formulant

  • Morrison HI, Wilkins K, Semenciw R, Mao Y, Wigle D (1992) Herbicides and cancer. J Nat Cancer Inst 84(24):1866–1874

    Article  CAS  Google Scholar 

  • Newton I (2004) The recent declines of farmland bird populations in Britain: an appraisal of causal factors and conservation actions. Intern J Avian Sci 146(4):579–600

    Google Scholar 

  • OECD (Organization for Economic Co-operation and Development) (2011) OECD MRL calculator: spreadsheet for single data set and spreadsheet for multiple data set, 2 March 2011. In: Pesticide publications/publications on pesticide residues. Available online: http://www.oecd.org

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 144(1):31–43

    Article  Google Scholar 

  • Panchal M, Kapoor C (2016) Indian agrochemicals market to reach $6.8 bn by FY17. Tata Strategic Management Group study. http://www.business-standard.com/content/b2b-chemicals/indian-agrochemicals-market-to-reach-6-8-bn-by-fy17-tata-strategic-management-group-113081200449_1.html

  • Parmar NB, Maraviya GV, Shah PG, Patel BK, Ghelani LM, Patel AM (1998) Pendimethalin residues in tobacco plant. Tob Res 24(1):57–59

    Google Scholar 

  • Paul R, Sharma R, Kulshrestha G, Singh SB (2009) Analysis of metsulfuron-methyl residues in wheat field soil: a comparison by HPLC and bioassay. Pest Manag Sci 65:963–968

    Article  CAS  Google Scholar 

  • Ramesh A, Maheswari ST (2004) Dissipation of alachlor in cotton plant soil and water and its bio-accumulation in fish. Chemosphere 54:547–652

    Article  Google Scholar 

  • Rao VS (1993) Principles of weed sciences. Oxford and IBH publishing Co, New Delhi., 1993, pp 23–42

    Google Scholar 

  • Rao S (2000) Principles of weed science, 2nd edn. Science Publishers, New York, p 526

    Google Scholar 

  • Rao AN, Chauhan BS (2015) Weeds and weed management in India – a review. In: Weed science in the Asian-Pacific Region. pp 87–118. www.oar.icrisat.org/9093/1/Chapter.pd

  • Retzinger EJ, Mallory-Smith C (1997) Classification of herbicides by site of action for weed resistance management strategies. Weed Technol 11:384–393

    Article  CAS  Google Scholar 

  • Reuber MD (1981) Carcinogenicity of picloram. J Toxicol Environ Health 7(2):207–222

    Article  CAS  Google Scholar 

  • Rice PJ, Anderson TA, Coats JR (2002) Degradation and persistence of metolachlor in soil: effects of concentration, soil moisture, soil depth, and sterilization. Environ Toxicol Chem 21(12):2640–2648

    Article  CAS  Google Scholar 

  • Robbins CS, Dowell BA, Dawson DK, Colon JA, Estrada R, Sutton A, Sutton R, Weyer D (1989) Comparison of neotropical migrant land bird populations wintering in tropical forest, isolated forest fragments, and agricultural habitats. In: Hagan JM, Johnston DW (eds) Ecology and conservation of neotropical migrant landbirds. Smithsonian Institution Press, Washington, DC, pp 207–220

    Google Scholar 

  • Samsel A, Seneff S (2016) Glyphosate pathways to modern diseases V: amino acid analogue of glycine in diverse proteins. J Biol Phys Chem 16:9–46

    Article  CAS  Google Scholar 

  • Sanbagavalli S, Kandasamy OS, Ganesan K (2000) Herbicide resistance in weeds: a review. Agric Rev 21(2):80–88

    Google Scholar 

  • Santos EA, Correia NM, Silva JRM, Velini ED, Passos ABRJ, Durigan JC (2015) Herbicide detection in groundwater in Córrego Rico-SP watershed. Planta Daninha 33(1):147–155. Available from. https://doi.org/10.1590/S0100-83582015000100017

    Article  Google Scholar 

  • Senarathna L, Eddleston M, Wilks MF, Woollen BH, Tomenson JA, Roberts DM, Buckley NA (2009) Prediction of outcome after paraquat poisoning by measurement of the plasma paraquat concentration. QJM Intern J Med 102(4):251–259. https://doi.org/10.1093/qjmed/hcp006.

    Article  CAS  Google Scholar 

  • Sharma KK (2016) AINP annual report 2015–16, All India Network Project on Pesticide Residues. Indian Council of Agricultural Research, New Delhi

    Google Scholar 

  • Si Y, Takagi K, Iwasaki A, Zhou D (2009) Adsorption, desorption and dissipation of metolachlor in surface and subsurface soils. Pest Manag Sci 65:956–562

    Article  CAS  Google Scholar 

  • Sing SB, Sharma R, Singh N (2012) Persistence of pyrazosulfuron in rice-field and laboratory soil under Indian tropical conditions. Pest Manag Sci 68(6):828–833

    Article  Google Scholar 

  • Singh SB, Das TK, Kulshrestha G (2013) Persistence of herbicide fenoxaprop ethyl and its acid metabolite in soil and wheat crop under Indian tropical conditions. J Environ Sci Health Part B 48(5):324–330

    Article  CAS  Google Scholar 

  • Soltani N, Shropshire C, Sikkema PH (2015) Pendimethalin residues from weed management in dry bean can cause injury in autumn seeded winter wheat. Agric Sci 6:159–163. https://doi.org/10.4236/as.2015.61014

    Article  CAS  Google Scholar 

  • Sondhia S (2007) Fluazifop-butyl residues in soybean crop and soil. Pestic Res J 19:248–250

    CAS  Google Scholar 

  • Sondhia S (2008a) Determination of imazosulfuron persistence in rice crop and soil. Environ Monit Assess 137(1–3):205–211

    Article  CAS  Google Scholar 

  • Sondhia S (2008b) Persistence of metsulfuron-methyl in wheat crop and soil. Environ Monit Assess 147(1–3):463–469

    Article  CAS  Google Scholar 

  • Sondhia S (2009a) Leaching behaviour of metsulfuron in two texturally different soils. Environ Monit Assess 154(1–4):111–115. https://doi.org/10.1007/s10661-008-0381-8

    Article  CAS  PubMed  Google Scholar 

  • Sondhia S (2009b) Persistence of metsulfuron-methyl in paddy field and detection of its residues in crop produce. Bull Environ Contam Toxicol 83:799–802

    Article  CAS  Google Scholar 

  • Sondhia S (2013) Harvest time residues of pendimethalin in tomato, cauliflower, and radish under field conditions. Toxicol Environ Chem 95:254–259. https://doi.org/10.1080/02772248.2013.765620

    Article  CAS  Google Scholar 

  • Sondhia S (2014) Herbicides residues in soil, water, plants and non-targeted organisms and human health implications: an Indian perspective. Indian J Weed Sci 46(1):66–85

    Google Scholar 

  • Sondhia S, Dixit A (2012) Bioefficacy and persistence of ethoxysulfuron in rice. Oryza 49:178–182

    Google Scholar 

  • Sondhia S, Varshney JG (2010) Herbicides. Satish Serial Publication House, New Delhi, p 567

    Google Scholar 

  • Sondhia S, Waseem U, Varma RK (2013) Fungal degradation of an acetolactate synthase (ALS) inhibitor pyrazosulfuron-ethyl in soil. Chemosphere 93:2140–2147

    Article  CAS  Google Scholar 

  • Sondhia S, Sharma N, Janaki P et al (2015a) Herbicide residue hazards and their mitigation. Indian Farming 65(7):34–39

    Google Scholar 

  • Sondhia S, Khankhane PJ, Singh PK et al (2015b) Determination of imazethapyr residues in soil and grains after its application to soybeans. J Pestic Sci 40(3):106–110. https://doi.org/10.1584/jpestics.D14-109

    Article  CAS  Google Scholar 

  • Srivastava AK, Trivedi P, Srivastava MK, Lohani M, Srivastava LP (2011) Monitoring of pesticide residues in market basket samples of vegetable from Lucknow City India: QuEChERS method. Environ Monit Assess 176(1–4):465–472. https://doi.org/10.1007/s10661-010-1597-y

    Article  CAS  PubMed  Google Scholar 

  • Stryer L (1995) Biochemistry, 4th edn. W.H. Freeman and Company. New York, USA, p 1064, ISBN 0-7167-2009-4

    Google Scholar 

  • Talbot AR, Shiaw MH, Huang JS, Yang SF, Goo TS, Wang SH, Chen CL, Sanford TR (1991) Acute poisoning with a glyphosate-surfactant herbicide (‘Roundup’): a review of 93 cases. Hum Exp Toxicol 10(1):1–8

    Article  CAS  Google Scholar 

  • Tandon S (2014) Degradation kinetics of anilofos in soil and residues in rice crop at harvest. Pest Manag Sci 70:1706–1710. https://doi.org/10.1002/ps.3707

    Article  CAS  PubMed  Google Scholar 

  • Tandon S (2015) Dissipation kinetics and residues analysis of pendimethalin in soil and maize under field conditions. Plant Soil Environ 61:496–500

    Article  CAS  Google Scholar 

  • Vencill W, Grey T, Culpepper S (2011) Resistance of weeds to herbicides. In: Kortekamp A (ed) Herbicides and environment. Intech Open Science, London

    Google Scholar 

  • Walia US, Bar LS, Dhaliwal BK (1997) Resistance to isoproturon in Phalaris minor Retz. in Punjab. Plant Prot Q 12:138–140

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, K.K., Tripathy, V., Gopal, M., Walia, S. (2019). Good Agricultural Practices and Monitoring of Herbicide Residues in India. In: Sondhia, S., Choudhury, P., Sharma, A. (eds) Herbicide Residue Research in India. Environmental Chemistry for a Sustainable World, vol 12. Springer, Singapore. https://doi.org/10.1007/978-981-13-1038-6_16

Download citation

Publish with us

Policies and ethics