Unmanned Aerial Vehicles for Disaster Management

  • Chunbo LuoEmail author
  • Wang Miao
  • Hanif Ullah
  • Sally McClean
  • Gerard Parr
  • Geyong Min
Part of the Springer Natural Hazards book series (SPRINGERNAT)


This chapter highlights the communication and network technologies that contribute to UAV disaster management systems, surveys the latest development of UAV-assisted disaster management applications, including early warning system, search and rescue, data gathering, emergency communication, and logistics, and presents our preliminary work to demonstrate the benefits and challenges of UAV systems for emergency communication. Finally, we discuss the characteristics and design challenges of UAV disaster management systems.


Unmanned aerial vehicle UAV Disaster management systems Network Communication 


  1. 1.
    Ruckversicherungs-Gesellschaft M (2015) Loss events worldwide 1980–2014. Geo Risks Research, NatCatSERVICEGoogle Scholar
  2. 2.
    nd MR (2018) The 10 most significant natural disasters worldwide by death toll from 1980 to 2016. Statista. Available at Accessed 5 Feb 2018
  3. 3.
    nd MR (2018) The 10 biggest natural disasters worldwide by economic damage from 1980 to 2016 (in billion U.S. dollars). Statista. Available at Accessed 5 Feb 2018
  4. 4.
    Erdelj M, Natalizio E, Chowdhury KR, Akyildiz IF (2017) Help from the sky: leveraging uavs for disaster management. IEEE Pervasive Comput 16(1):24–32CrossRefGoogle Scholar
  5. 5.
    Government of Nepal Ministry of Home Affairs (2015) Nepal disaster reportGoogle Scholar
  6. 6.
    Hein D et al (2017) An integrated rapid mapping systems for disaster management. Int Arch Photogram Remote Sens Spatial Inf Sci vol XLII-1/W1Google Scholar
  7. 7.
    Gupta L et al (2016) Survey of important issues in UAV communication networks. IEEE Commun Surv Tutorials 18(2)Google Scholar
  8. 8.
    Rakesh MT (2016) Study on Google‘s loon project. Int J Adv Res Comput Eng Technol (IJARCET) 5(5)Google Scholar
  9. 9.
    Sathyanarayanan Chandrasekharan et al (2016) Designing and implementing future aerial communication networks. IEEE Commun Mag 54(5)Google Scholar
  10. 10.
    Wang Y et al (2014) Three-dimensional wireless sensor networks: geo-metric approaches for topology and routing design. In: The art of wireless sensor networks, signals and communication technology. Springer, Berlin, p 367–409Google Scholar
  11. 11.
    Luo C, Parr G, McClean SI, Peoples C, Wang X (2015) Hybrid demodulate-forward relay protocol for two-way relay channels. IEEE Trans Wireless Commun 14(8):4328–4341CrossRefGoogle Scholar
  12. 12.
    Rosati S, Krużelecki K, Heitz G, Floreano D, Rimoldi B (2016) Dynamic routing for flying ad hoc networks. IEEE Trans Veh Technol 65(3):1690–1700CrossRefGoogle Scholar
  13. 13.
    Ullah H, McClean S, Nixon P, Parr G, Luo C (2017) An optimal UAV deployment algorithm for bridging communication. In: 15th international conference on ITS telecommunications (ITST), pp 1–7Google Scholar
  14. 14.
    Mozaffari M, Saad W, Bennis M, Debbah M (2016) Unmanned aerial vehicle with underlaid device-to-device communications: performance and tradeoffs. IEEE Trans Wireless Commun 15(6):3949–3963CrossRefGoogle Scholar
  15. 15.
    Jagun K, Hailes S (2014) Scheduling UAVs to bridge communications in delay-tolerant networks using real-time scheduling analysis techniques. In: System integration (SII), 2014 IEEE/SICE international symposium on 2014, pp 363–369Google Scholar
  16. 16.
    Luo C, McClean SI, Parr G, Wang Q, Wang X, Grecos C (2014) A communication model to decouple the path planning and connectivity optimization and support cooperative sensing. IEEE Trans Veh Technol 63(8):3985–3997CrossRefGoogle Scholar
  17. 17.
    Morgenthaler S, Braun T, Zhongliang Z, Staub T, Anwander M (2012) UAVNet: A mobile wireless mesh network using unmanned aerial vehicles. In: Globecom Workshops (GC Wkshps), 2012 IEEE, pp 1603–1608Google Scholar
  18. 18.
    Ponda SS, Johnson LB, Kopeikin AN, Han-Lim C, How JP (2012) Distributed planning strategies to ensure network connectivity for dynamic heterogeneous teams. IEEE J Sel Areas Commun 30(5):861–869CrossRefGoogle Scholar
  19. 19.
    Palat RC, Annamalau A, Reed JR (2005) Cooperative relaying for ad hoc ground networks using swarm UAVs. IEEE Military communications conference (MILCOM), pp 1588–1594, 17–20 Oct 2005Google Scholar
  20. 20.
    Charlesworth PB (2014) Using non-cooperative games to coordinate communications UAVs. In: Globecom Workshops (GC Wkshps), pp 1463–1468Google Scholar
  21. 21.
    Chandrashekar K, Dekhordi MR, Baras JS (2004) Providing full connectivity in large ad hoc networks by dynamic placement of aerial platforms. IEEE Military communications conference (MILCOM), pp 1429–1436, 31 Oct–3 Nov 2004Google Scholar
  22. 22.
    Heimfarth T, de Araujo JP (2014) Using unmanned aerial vehicle to connect disjoint segments of wireless sensor network. In: IEEE 28th international conference on advanced information networking and applications, pp 907–914Google Scholar
  23. 23.
    Zhu M, Liu F, Cai Z, Xu M (2015) Maintaining connectivity of MANETs through multiple unmanned aerial vehicles. Mathematical Problems in Engineering, vol 2015, p 14Google Scholar
  24. 24.
    Heimfarth T, de Araujo JP, Giacomin JC (2014) Unmanned aerial vehicle as data mule for connecting disjoint segments of wireless sensor network with unbalanced traffic. In: IEEE 17th international symposium on object/component/service-oriented real-time distributed computing, pp 246–252Google Scholar
  25. 25.
    Marinho MAM, de Freitas EP, de Costa JPCL, de Almeida ALF, de Sousa RT (2013) Using cooperative MIMO techniques and UAV relay networks to support connectivity in sparse wireless sensor networks. In: International conference on computing, management and telecommunications (ComManTel), pp 49–54, 21–24 Jan 2013Google Scholar
  26. 26.
    Guillen-Perez A, Sanchez-Iborra R, Cano MD, Sanchez-Aarnoutse JC, Garcia-Haro J (2016) WiFi networks on drones. In: 2016 ITU kaleidoscope: ICTs for a sustainable world (ITU WT), pp 1–8Google Scholar
  27. 27.
    Asadpour M, Giustiniano D, Hummel KA, Heimlicher S (2013) Characterizing 802.11n aerial communication. Presented at the proceedings of the second ACM MobiHoc workshop on airborne networks and communications, Bangalore, IndiaGoogle Scholar
  28. 28.
    Yanmaz E, Yahyanejad S, Rinner B, Hellwagner H, Bettstetter C (2018) Drone networks: communications, coordination, and sensing. Ad Hoc Netw vol 68, pp 1–15Google Scholar
  29. 29.
    Ullah H, Abu-Tair M, McClean S, Nixon P, Parr G, Luo C (2017) An unmanned aerial vehicle based wireless network for bridging communication. In: The 14th international symposium on pervasive systems, algorithms and networks, pp 179–184Google Scholar
  30. 30.
    Ullah H, Abu-Tair M, McClean S, Nixon P, Parr G, Luo C (2018) UAV-based wireless network for bridging communication using IEEE 802.11 protocols. Submitted to IEEE journal on selected areas in communications (JSAC), Special issue on airborne communication networksGoogle Scholar
  31. 31.
    Andre T et al (2015) Application-driven design of aerial communication networks. IEEE Commun Mag 52(5):129–137CrossRefGoogle Scholar
  32. 32.
    George SM et al (2010) DistressNet: a wireless ad hoc and sensor network architecture for situation management in disaster response. IEEE Commun Mag 48(3):128–136CrossRefGoogle Scholar
  33. 33.
    Shengli Fu et al (2015) Spotlight: UAVs for disaster area communication. HDIAC SpotlightGoogle Scholar
  34. 34.
    Wu Q et al (2018) Joint trajectory and communication design for multi-UAV enabled wireless networks. IEEE Trans Wireless Commun 17(3):2109–2121CrossRefGoogle Scholar
  35. 35.
    Gurkan Tuna et al (2012) Design strategies of unmanned aerial vehicle-aided communication for disaster recovery. In: 9th IEEE international conference on high capacity optical networks and enabling technologies (HONET)Google Scholar
  36. 36.
    Sonia Waharte et al (2010) Supporting search and rescue operations with UAVs. In: 2010 international conference on emerging security technologies (EST)Google Scholar
  37. 37.
    Silvagni Mario et al (2016) Multipurpose UAV for search and rescue operations in mountain avalanche events. Geomatics Nat Hazards Risk 8(1):18–33CrossRefGoogle Scholar
  38. 38.
    Swiss foundation for mine action (2016) Simulation—drones for search and rescue in emergency response simulationGoogle Scholar
  39. 39.
    Zhang J et al (2016) Flooding disaster oriented USV & UAV system development & demonstration. In: IEEE-OceansGoogle Scholar
  40. 40.
    Kakooei M et al (2017) Fusion of satellite, aircraft, and UAV data for automatic disaster damage assessment. J Remote Sens 38(8)Google Scholar
  41. 41.
    Corrado C et al (2017) Data fusion and unmanned aerial vehicles (UAVs) for first responders. In: 2017 IEEE international symposium on technologies for homeland security (HST)Google Scholar
  42. 42.
    Jiang X, Ren P, Luo C (2016) A sensor self-aware distributed consensus filter for simultaneous localization and tracking. Cognitive Comput 8(5):828–838CrossRefGoogle Scholar
  43. 43.
    Gong Y, Luo C, Chen Z (2012) Two-path succussive relaying with hybrid demodulate and forward. IEEE Trans Veh Technol 61(5):2044–2053Google Scholar
  44. 44.
    Raptopoulos A (2013) No Roads? There is a Drone for That. TED ConferenceGoogle Scholar
  45. 45.
    Carlsson JG et al (2017) Coordinated logistics with a truck and a drone, InformGoogle Scholar
  46. 46.
    Luo C, Casaseca-de-la-Higuera P, McClean S, Parr G, Ren P (2018) Characterisation of received signal strength perturbations using allan variance. IEEE Trans Aerosp Electron Syst 54(2):873–889Google Scholar
  47. 47.
    Morgenthaler S, Braun T, Zhao Z, Staub T, Anwander M (2012) UAVNet: A mobile wireless mesh network using unmanned aerial vehicles. In: Proc IEEE GLOBECOM Workshop-WiUAV, pp 1603–1608Google Scholar
  48. 48.
    Luo C, Wang Q, Wang X, Grecos C, Yang R, Ren P (2013) Exploiting selection diversity and recovering spectrum loss in wireless sensor networks with directional antennas. Globecom, 2013 IEEE, Atlanta, Georgia, 9–13 Dec 2013Google Scholar
  49. 49.
    Luo C, Nightingale J, Asemota E, Grecos C (2015) A UAV-cloud system for disaster sensing applications. In: IEEE 81st vehicular technology conference (VTC Spring), Glasgow, 11–14 May 2015Google Scholar
  50. 50.
    Luo C, McClean SI, Parr G, Teacy L, De Nardi R (2013) UAV position estimation and collision avoidance using the extended kalman filter. IEEE Trans Veh Technol 62(6):2749–2762CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Chunbo Luo
    • 1
    Email author
  • Wang Miao
    • 1
  • Hanif Ullah
    • 2
  • Sally McClean
    • 2
  • Gerard Parr
    • 3
  • Geyong Min
    • 1
  1. 1.University of ExeterExeterUK
  2. 2.University of UlsterColeraineUK
  3. 3.University of East AngliaNorwichUK

Personalised recommendations